Majoration du nombre de résonances près de l'axe réel (d'après un travail avec M. Zworski)
We are concerned with a 2D time harmonic wave propagation problem in a medium including a thin slot whose thickness ε is small with respect to the wavelength. In a previous article, we derived formally an asymptotic expansion of the solution with respect to ε using the method of matched asymptotic expansions. We also proved the existence and uniqueness of the terms of the asymptotics. In this paper, we complete the mathematical justification of our work by deriving optimal error estimates between...
We study the time-harmonic acoustic scattering in a duct in presence of a flow and of a discontinuous impedance boundary condition. Unlike a continuous impedance, a discontinuous one leads to still open modeling questions, as in particular the singularity of the solution at the abrupt transition and the choice of the right unknown to formulate the scattering problem. To address these questions we propose a mathematical approach based on variational formulations set in weighted Sobolev spaces. Considering...
Cet article est consacré à l’étude des mesures limites associées à la solution de l’équation de Helmholtz avec un terme source se concentrant en un point. Le potentiel est supposé et l’opérateur non-captif. La solution de l’équation de Schrödinger semi-classique s’écrit alors micro-localement comme somme finie de distributions lagrangiennes. Sous une hypothèse géométrique, qui généralise l’hypothèse du viriel, on en déduit que la mesure limite existe et qu’elle vérifie des propriétés standard....
We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.
We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.
This paper deals with the mortar spectral element discretization of two equivalent problems, the Laplace equation and the Darcy system, in a domain which corresponds to a nonhomogeneous anisotropic medium. The numerical analysis of the discretization leads to optimal error estimates and the numerical experiments that we present enable us to verify its efficiency.
We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy of our discretization.
We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy...