Subsolutions of elliptic operators in divergence form and application to two-phase free boundary problems.
The Steklov postprocessing operator for the linear finite element method is studied. Superconvergence of order 𝓞(h²) is proved for a class of second order differential equations with zero Dirichlet boundary conditions for arbitrary space dimensions. Relations to other postprocessing and averaging schemes are discussed.
2000 Mathematics Subject Classification: 35J70, 35P15.The asymptotic of the first eigenvalue for linear second order elliptic equations in divergence form with large drift is studied. A necessary and a sufficient condition for the maximum possible rate of the first eigenvalue is proved.