Page 1 Next

Displaying 1 – 20 of 107

Showing per page

Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd

M. Aurada, M. Feischl, J. Kemetmüller, M. Page, D. Praetorius (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the solution of second order elliptic PDEs in Rd with inhomogeneous Dirichlet data by means of an h–adaptive FEM with fixed polynomial order p ∈ N. As model example serves the Poisson equation with mixed Dirichlet–Neumann boundary conditions, where the inhomogeneous Dirichlet data are discretized by use of an H1 / 2–stable projection, for instance, the L2–projection for p = 1 or the Scott–Zhang projection for general p ≥ 1. For error estimation, we use a residual error estimator which...

Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods

Ronald H.W. Hoppe, Barbara Wohlmuth (1995)

Applications of Mathematics

We consider mixed finite element discretizations of second order elliptic boundary value problems. Emphasis is on the efficient iterative solution by multilevel techniques with respect to an adaptively generated hierarchy of nonuniform triangulations. In particular, we present two multilevel solvers, the first one relying on ideas from domain decomposition and the second one resulting from mixed hybridization. Local refinement of the underlying triangulations is done by efficient and reliable a...

Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations

Martin A. Grepl, Yvon Maday, Ngoc C. Nguyen, Anthony T. Patera (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we extend the reduced-basis approximations developed earlier for linear elliptic and parabolic partial differential equations with affine parameter dependence to problems involving (a) nonaffine dependence on the parameter, and (b) nonlinear dependence on the field variable. The method replaces the nonaffine and nonlinear terms with a coefficient function approximation which then permits an efficient offline-online computational decomposition. We first review the coefficient function...

Efficient representations of Green’s functions for some elliptic equations with piecewise-constant coefficients

Yuri Melnikov (2010)

Open Mathematics

Convenient for immediate computer implementation equivalents of Green’s functions are obtained for boundary-contact value problems posed for two-dimensional Laplace and Klein-Gordon equations on some regions filled in with piecewise homogeneous isotropic conductive materials. Dirichlet, Neumann and Robin conditions are allowed on the outer boundary of a simply-connected region, while conditions of ideal contact are assumed on interface lines. The objective in this study is to widen the range of...

Eigenvalue asymptotics for Neumann Laplacian in domains with ultra-thin cusps

Victor Ivrii (1998/1999)

Séminaire Équations aux dérivées partielles

Asymptotics with sharp remainder estimates are recovered for number N ( τ ) of eigenvalues of the generalized Maxwell problem and for related Laplacians which are similar to Neumann Laplacian. We consider domains with ultra-thin cusps (with exp ( - | x | m + 1 ) width ; m > 0 ) and recover eigenvalue asymptotics with sharp remainder estimates.

Elliptic functions, area integrals and the exponential square class on B₁(0) ⊆ ℝⁿ, n > 2

Caroline Sweezy (2004)

Studia Mathematica

For two strictly elliptic operators L₀ and L₁ on the unit ball in ℝⁿ, whose coefficients have a difference function that satisfies a Carleson-type condition, it is shown that a pointwise comparison concerning Lusin area integrals is valid. This result is used to prove that if L₁u₁ = 0 in B₁(0) and S u L ( S n - 1 ) then u | S n - 1 = f lies in the exponential square class whenever L₀ is an operator so that L₀u₀ = 0 and S u L implies u | S n - 1 is in the exponential square class; here S is the Lusin area integral. The exponential square theorem,...

Elliptic problems in generalized Orlicz-Musielak spaces

Piotr Gwiazda, Piotr Minakowski, Aneta Wróblewska-Kamińska (2012)

Open Mathematics

We consider a strongly nonlinear monotone elliptic problem in generalized Orlicz-Musielak spaces. We assume neither a Δ2 nor ∇2-condition for an inhomogeneous and anisotropic N-function but assume it to be log-Hölder continuous with respect to x. We show the existence of weak solutions to the zero Dirichlet boundary value problem. Within the proof the L ∞-truncation method is coupled with a special version of the Minty-Browder trick for non-reflexive and non-separable Banach spaces.

Embedding and a priori wavelet-adaptivity for Dirichlet problems

Andreas Rieder (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The accuracy of the domain embedding method from [A. Rieder, Modél. Math. Anal. Numér.32 (1998) 405-431] for the solution of Dirichlet problems suffers under a coarse boundary approximation. To overcome this drawback the method is furnished with an a priori (static) strategy for an adaptive approximation space refinement near the boundary. This is done by selecting suitable wavelet subspaces. Error estimates and numerical experiments validate the proposed adaptive scheme. In contrast to similar,...

Embedding of open riemannian manifolds by harmonic functions

Robert E. Greene, H. Wu (1975)

Annales de l'institut Fourier

Let M be a noncompact Riemannian manifold of dimension n . Then there exists a proper embedding of M into R 2 n + 1 by harmonic functions on M . It is easy to find 2 n + 1 harmonic functions which give an embedding. However, it is more difficult to achieve properness. The proof depends on the theorems of Lax-Malgrange and Aronszajn-Cordes in the theory of elliptic equations.

Currently displaying 1 – 20 of 107

Page 1 Next