Metric currents and geometry of Wasserstein spaces
In this paper we prove that every weak and strong local minimizer of the functional where , f grows like , g grows like and 1<q<p<2, is on an open subset of Ω such that . Such functionals naturally arise from nonlinear elasticity problems. The key point in order to obtain the partial regularity result is to establish an energy estimate of Caccioppoli type, which is based on an appropriate choice of the test functions. The limit case is also treated for weak local minimizers. ...
We obtain in this paper a multiplicity result for strongly indefinite semilinear elliptic systems in bounded domains as well as in .
Our main purpose is to establish the existence of weak solutions of second order quasilinear elliptic systems ⎧ , x ∈ Ω, ⎨ , x ∈ Ω, ⎩ u = v = 0, x∈ ∂Ω, where 1 < q < p < N and is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and (i = 1,2) are sign-changing functions, where , , and denotes the p-Laplace operator. We use variational methods.