Nonexistence theorems for weak solutions of quasilinear elliptic equations.
The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type where is the open ball of center and radius in , and is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain.
In this paper we prove existence results for some nonlinear degenerate elliptic equations with data in the space of bounded Radon measures and we improve the results already obtained in Cirmi G.R., On the existence of solutions to non-linear degenerate elliptic equations with measure data, Ricerche Mat. 42 (1993), no. 2, 315–329.
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all . Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper...
In this paper, we study a nonlinear elliptic equation with critical exponent, invariant under the action of a subgroup G of the isometry group of a compact Riemannian manifold. We obtain some existence results of positive solutions of this equation, and under some assumptions on G, we show that we can solve this equation for supercritical exponents.
In this paper existence and multiplicity of solutions of the elliptic problem in on , are discussed provided the parameters and are close to the first eigenvalue . The sufficient conditions...