Page 1 Next

Displaying 1 – 20 of 26

Showing per page

Hamilton-Jacobi flows and characterization of solutions of Aronsson equations

Petri Juutinen, Eero Saksman (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this note, we verify the conjecture of Barron, Evans and Jensen [3] regarding the characterization of viscosity solutions of general Aronsson equations in terms of the properties of associated forward and backwards Hamilton-Jacobi flows. A special case of this result is analogous to the characterization of infinity harmonic functions in terms of convexity and concavity of the functions r max y B r ( x ) u ( y ) and r min y B r ( x ) u ( y ) , respectively.

Hardy-Poincaré type inequalities derived from p-harmonic problems

Iwona Skrzypczak (2014)

Banach Center Publications

We apply general Hardy type inequalities, recently obtained by the author. As a consequence we obtain a family of Hardy-Poincaré inequalities with certain constants, contributing to the question about precise constants in such inequalities posed in [3]. We confirm optimality of some constants obtained in [3] and [8]. Furthermore, we give constants for generalized inequalities with the proof of their optimality.

Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations

Guy Barles, Emmanuel Chasseigne, Cyril Imbert (2011)

Journal of the European Mathematical Society

This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...

Homogenization of a monotone problem in a domain with oscillating boundary

Dominique Blanchard, Luciano Carbone, Antonio Gaudiello (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the asymptotic behaviour of the following nonlinear problem: { - div ( a ( D u h ) ) + | u h | p - 2 u h = f in Ω h , a ( D u h ) · ν = 0 on Ω h , . in a domain Ωh of n whose boundary ∂Ωh contains an oscillating part with respect to h when h tends to ∞. The oscillating boundary is defined by a set of cylinders with axis 0xn that are h-1-periodically distributed. We prove that the limit problem in the domain corresponding to the oscillating boundary identifies with a diffusion operator with respect to xn coupled with an algebraic problem for the limit fluxes.

Currently displaying 1 – 20 of 26

Page 1 Next