Page 1

Displaying 1 – 11 of 11

Showing per page

Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket

Gabriele Bonanno, Giovanni Molica Bisci, Vicenţiu Rădulescu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpiński gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpiński fractal. The abstract results are illustrated by explicit examples.

Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations

Aris S. Tersenov (2009)

Archivum Mathematicum

In the present paper we study the Dirichlet boundary value problem for quasilinear elliptic equations including non-uniformly and degenerate ones. In particular, we consider mean curvature equation and pseudo p-Laplace equation as well. It is well-known that the proof of the existence of continuous viscosity solutions is based on Ishii’s implementation of Perron’s method. In order to use this method one has to produce suitable subsolution and supersolution. Here we introduce new methods to construct...

Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. Part I: Study of the perturbed Ginzburg–Landau equation

Sylvia Serfaty (2007)

Journal of the European Mathematical Society

We study vortices for solutions of the perturbed Ginzburg–Landau equations Δ u + ( u / ε 2 ) ( 1 | u | 2 ) = f ε where f ε is estimated in L 2 . We prove upper bounds for the Ginzburg–Landau energy in terms of f ε L 2 , and obtain lower bounds for f ε L 2 in terms of the vortices when these form “unbalanced clusters” where i d i 2 ( i d i ) 2 . These results will serve in Part II of this paper to provide estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow one to study various phenomena occurring in this flow, including...

Vortex rings for the Gross-Pitaevskii equation

Fabrice Bethuel, G. Orlandi, Didier Smets (2004)

Journal of the European Mathematical Society

We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension N 3 . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if N = 3 ).

Currently displaying 1 – 11 of 11

Page 1