Displaying 501 – 520 of 850

Showing per page

On Some Nonlinear Partial Differential Equations Involving the “1”-Laplacian and Critical Sobolev Exponent

Françoise Demengel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let Ω be a smooth bounded domain in 𝐑 n , n > 1, let a and f be continuous functions on Ω ¯ , 1 = n n - 1 . We are concerned here with the existence of solution in B V ( Ω ) , positive or not, to the problem:
 - div σ + a ( x ) s i g n u a m p ; = f | u | 1 - 2 u σ . u a m p ; = | u | in Ω u is not identically zero , a m p ; - σ . n ( u ) = | u | on Ω . This problem is closely related to the extremal functions for the problem of the best constant of W 1 , 1 ( Ω ) into L N N - 1 ( Ω ) .

On the critical Neumann problem with lower order perturbations

Jan Chabrowski, Bernhard Ruf (2007)

Colloquium Mathematicae

We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent and lower order perturbations in bounded domains. Solutions are obtained by min max methods based on a topological linking. A nonlinear perturbation of a lower order is allowed to interfere with the spectrum of the operator -Δ with the Neumann boundary conditions.

Currently displaying 501 – 520 of 850