The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 621 –
640 of
851
Optimal control problems for semilinear elliptic equations
with control constraints and pointwise state constraints are
studied. Several theoretical results are derived, which are
necessary to carry out a numerical analysis for this class of
control problems. In particular, sufficient second-order optimality
conditions, some new regularity results on optimal controls and a
sufficient condition for the uniqueness of the Lagrange multiplier
associated with the state constraints are presented.
Maximization problems are formulated for a class of quasistatic problems in the deformation theory of plasticity with respect to an uncertainty in the material function. Approximate problems are introduced on the basis of cubic Hermite splines and finite elements. The solvability of both continuous and approximate problems is proved and some convergence analysis presented.
In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.
Currently displaying 621 –
640 of
851