On the spectrum of the -Laplacian operator for Neumann eigenvalue problems with weights.
We consider a nonlinear differential-functional parabolic boundary initial value problem (1) ⎧A z + f(x,z(t,x),z(t,·)) - ∂z/∂t = 0 for t > 0, x ∈ G, ⎨z(t,x) = h(x) for t > 0, x ∈ ∂G, ⎩z(0,x) = φ₀(x) for x ∈ G, and the associated elliptic boundary value problem with Dirichlet condition (2) ⎧Az + f(x,z(x),z(·)) = 0 for x ∈ G, ⎨z(x) = h(x) for x ∈ ∂G ⎩ where , G is an open and bounded domain with (0 < α ≤ 1) boundary, the operator Az := ∑j,k=1m ajk(x) (∂²z/(∂xj ∂xk)) is...
We study the Ambrosetti–Prodi and Ambrosetti–Rabinowitz problems.We prove for the first one the existence of a continuum of solutions with shape of a reflected (-shape). Next, we show that there is a relationship between these two problems.
We study here an optimal control problem for a semilinear elliptic equation with an exponential nonlinearity, such that we cannot expect to have a solution of the state equation for any given control. We then have to speak of pairs (control, state). After having defined a suitable functional class in which we look for solutions, we prove existence of an optimal pair for a large class of cost functions using a non standard compactness argument. Then, we derive a first order optimality system assuming...