Displaying 261 – 280 of 551

Showing per page

Some new oscillation criteria for second order elliptic equations with damping

Rong-Kun Zhuang, Zheng-an Yao (2005)

Annales Polonici Mathematici

Some new oscillation criteria are obtained for second order elliptic differential equations with damping i , j = 1 n D i [ A i j ( x ) D j y ] + i = 1 n b i ( x ) D i y + q ( x ) f ( y ) = 0 , x ∈ Ω, where Ω is an exterior domain in ℝⁿ. These criteria are different from most known ones in the sense that they are based on the information only on a sequence of subdomains of Ω ⊂ ℝⁿ, rather than on the whole exterior domain Ω. Our results are more natural in view of the Sturm Separation Theorem.

Some new problems in spectral optimization

Giuseppe Buttazzo, Bozhidar Velichkov (2014)

Banach Center Publications

We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger potential in suitable classes.

Some possibly degenerate elliptic problems with measure data and non linearity on the boundary

Thierry Gallouët, Yannick Sire (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

The goal of this paper is to study some possibly degenerate elliptic equation in a bounded domain with a nonlinear boundary condition involving measure data. We investigate two types of problems: the first one deals with the laplacian in a bounded domain with measure supported on the domain and on the boundary. A second one deals with the same type of data but involves a degenerate weight in the equation. In both cases, the nonlinearity under consideration lies on the boundary. For the first problem,...

Currently displaying 261 – 280 of 551