The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 301 –
320 of
551
The paper concerns the existence of weak solutions to nonlinear elliptic equations of the form A(u) + g(x,u,∇u) = f, where A is an operator from an appropriate anisotropic function space to its dual and the right hand side term is in with 0 < m < 1. We assume a sign condition on the nonlinear term g, but no growth restrictions on u.
In questo articolo consideriamo alcune semplici equazioni a derivate parziali elittiche nonlineari, per le quali il Teorema della Funzione Inversa, se applicato in modo formale, suggerisce l'esistenza di soluzioni. Nonostante ciò, proviamo che non esistono soluzioni neppure in vari sensi deboli. Un problema modello è dato da in , su , dove , , è un dominio limitato contenente . Per qualunque costante , arbitrariamente piccola, proviamo che questo problema non ammette soluzioni distribuzionali...
In this paper, some superconvergence results of high-degree finite element method are obtained for solving a second order elliptic equation with variable coefficients on the inner locally symmetric mesh with respect to a point x 0 for triangular meshes. By using of the weak estimates and local symmetric technique, we obtain improved discretization errors of O(h p+1 |ln h|2) and O(h p+2 |ln h|2) when p (≥ 3) is odd and p (≥ 4) is even, respectively. Meanwhile, the results show that the combination...
The present paper studies second order partial differential equations in two independent variables of the form Div(ρ1|u,1|n-1u,1, ρ2|u,2|n-1u,2) = 0. We obtain decay estimates for the solutions in a semi-infinite strip. The results may be seen as theorems of Phragmen-Lindelof type. The method is strongly based on the ideas of Horgan and Payne [5], [6], [8].
The method of fundamental solutions and some versions applied to mixed boundary value problems are considered. Several strategies are outlined to avoid the problems due to the singularity of the fundamental solutions: the use of higher order fundamental solutions, and the use of nearly fundamental solutions and special fundamental solutions concentrated on lines instead of points. The errors of the approximations as well as the problem of ill-conditioned matrices are illustrated via numerical examples....
The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations...
We develop the analysis of stabilized sparse tensor-product
finite element methods for high-dimensional,
non-self-adjoint and possibly degenerate second-order partial
differential equations of the form
, ,
where is a symmetric positive semidefinite matrix,
using piecewise polynomials of
degree p ≥ 1. Our convergence analysis is based on new
high-dimensional approximation results in sparse tensor-product
spaces. We show that the error between the analytical solution u and its stabilized
sparse...
Currently displaying 301 –
320 of
551