Displaying 21 – 40 of 109

Showing per page

Dependence of fractional powers of elliptic operators on boundary conditions

Pavel E. Sobolevskii (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The realization of an elliptic operator A under suitable boundary conditions is considered and the dependence of the square-root of A from the various conditions is studied.

Déterminants et intégrales de Fresnel

Yves Colin de Verdière (1999)

Annales de l'institut Fourier

On présente ici une approche directe et géométrique pour le calcul des déterminants d’opérateurs de type Schrödinger sur un graphe fini. Du calcul de l’intégrale de Fresnel associée, on déduit le déterminant. Le calcul des intégrales de Fresnel est grandement facilité par l’utilisation simultanée du théorème de Fubini et d’une version linéaire du calcul symbolique des opérateurs intégraux de Fourier. On obtient de façon directe une formule générale exprimant le déterminant en terme des conditions...

Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result

Bruno Canuto, Otared Kavian (2004)

Bollettino dell'Unione Matematica Italiana

For a bounded and sufficiently smooth domain Ω in R N , N 2 , let λ k k = 1 and φ k k = 1 be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) - div a x φ k + q x φ k = λ k ϱ x φ k  in  Ω , a n φ k = 0  su  Ω . We prove that knowledge of the Dirichlet boundary spectral data λ k k = 1 , φ k | Ω k = 1 determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map γ for a related elliptic problem. Under suitable hypothesis on the coefficients a , q , ϱ their identifiability is then proved. We prove also analogous results for Dirichlet...

Currently displaying 21 – 40 of 109