Eigencurves of the -Laplacian with weights and their asymptotic behavior.
Asymptotics with sharp remainder estimates are recovered for number of eigenvalues of the generalized Maxwell problem and for related Laplacians which are similar to Neumann Laplacian. We consider domains with ultra-thin cusps (with ) width ; ) and recover eigenvalue asymptotics with sharp remainder estimates.
In this paper we get the existence results of the nontrivial weak solution (λ,u) of the following eigenvalue problem of quasilinear elliptic systems-Dα (aαβ(x,u) Dβui) + 1/2 Dui aαβ(x,u)Dαuj Dβuj + h(x) ui = λ|u|p-2ui, for x ∈ Rn, 1 ≤ i ≤ N and u = (u1, u2, ..., uN) ∈ E = {v = (v1, v2, ..., vN) | vi ∈ H1(Rn), 1 ≤ i ≤ N},where aαβ(x,u) satisfy the natural growth conditions. It seems that this kind of problem has never been dealt with before.
We consider the linear eigenvalue problem -Δu = λV(x)u, , and its nonlinear generalization , . The set Ω need not be bounded, in particular, is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues .
A boundary value problem for the Laplace equation with Dirichlet and Neumann boundary conditions on an equilateral triangle is transformed to a problem of the same type on a rectangle. This enables us to use, e.g., the cyclic reduction method for computing the numerical solution of the problem. By the same transformation, explicit formulae for all eigenvalues and all eigenfunctions of the corresponding operator are obtained.
A discretized boundary value problem for the Laplace equation with the Dirichlet and Neumann boundary conditions on an equilateral triangle with a triangular mesh is transformed into a problem of the same type on a rectangle. Explicit formulae for all eigenvalues and all eigenfunctions are given.
We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are...