Strongly nonlinear elliptic problem without growth condition.
We prove the periodicity of all H2-local minimizers with low energy for a one-dimensional higher order variational problem. The results extend and complement an earlier work of Stefan Müller which concerns the structure of global minimizer. The energy functional studied in this work is motivated by the investigation of coherent solid phase transformations and the competition between the effects from regularization and formation of small scale structures. With a special choice of a bilinear double...
— Vengono riconsiderati il problema di derivata obliqua regolare e quello misto di Dirichlet-derivata obliqua regolare per le funzioni armoniche in un dominio di e le questioni di completezza hilbertiana connesse già studiate in un precedente lavoro e viene data una nuova dimostrazione di un teorema di unicità.
— Si presentano alcuni risultati di esistenza e molteplicità di soluzioni positive per l'equazione in , dove è un aperto limitato di con e . Si mostra che opportune perturbazioni di comportano l'esistenza di soluzioni positive, che convergono a zero quando la capacità delle perturbazioni tende a zero. In particolare, si ottengono risultati di esistenza e molteplicità di soluzioni positive in alcuni aperti limitati e contrattili, non necessariamente simmetrici.
We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdifferential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas...
In this paper we furnish mean value characterizations for subharmonic functions related to linear second order partial differential operators with nonnegative characteristic form, possessing a well-behaved fundamental solution . These characterizations are based on suitable average operators on the level sets of . Asymptotic characterizations are also considered, extending classical results of Blaschke, Privaloff, Radó, Beckenbach, Reade and Saks. We analyze as well the notion of subharmonic function...
Let (M,g) be a compact Riemannian manifold without boundary, with dim M ≥ 3, and f: ℝ → ℝ a continuous function which is sublinear at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem , σ ∈ M, ω ∈ H₁²(M), is established for certain eigenvalues λ > 0, depending on further properties of f and on explicit forms of the function K̃. Here, stands for the Laplace-Beltrami operator on (M,g), and α, K̃ are smooth positive functions. These multiplicity...