Previous Page 6

Displaying 101 – 109 of 109

Showing per page

Dynamic Programming Principle for tug-of-war games with noise

Juan J. Manfredi, Mikko Parviainen, Julio D. Rossi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a two-player zero-sum-game in a bounded open domain Ω described as follows: at a point x ∈ Ω, Players I and II play an ε-step tug-of-war game with probability α, and with probability β (α + β = 1), a random point in the ball of radius ε centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that...

Dynamic Programming Principle for tug-of-war games with noise

Juan J. Manfredi, Mikko Parviainen, Julio D. Rossi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a two-player zero-sum-game in a bounded open domain Ω described as follows: at a point x ∈ Ω, Players I and II play an ε-step tug-of-war game with probability α, and with probability β (α + β = 1), a random point in the ball of radius ε centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that the value functions of this game satisfy the Dynamic Programming Principle...

Dynamic Programming Principle for tug-of-war games with noise

Juan J. Manfredi, Mikko Parviainen, Julio D. Rossi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a two-player zero-sum-game in a bounded open domain Ω described as follows: at a point x ∈ Ω, Players I and II play an ε-step tug-of-war game with probability α, and with probability β (α + β = 1), a random point in the ball of radius ε centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that...

Dynamic von Kármán equations involving nonlinear damping: Time-periodic solutions

Eduard Feireisl (1989)

Aplikace matematiky

In the paper, time-periodic solutions to dynamic von Kármán equations are investigated. Assuming that there is a damping term in the equations we are able to show the existence of at least one solution to the problem. The Faedo-Galerkin method is used together with some basic ideas concerning monotone operators on Orlicz spaces.

Dynamical Resonances and SSF Singularities for a Magnetic Schrödinger Operator

Astaburuaga, María Angélica, Briet, Philippe, Bruneau, Vincent, Fernández, Claudio, Raikov, Georgi (2008)

Serdica Mathematical Journal

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic...

Currently displaying 101 – 109 of 109

Previous Page 6