Displaying 81 – 100 of 109

Showing per page

Divergence boundary conditions for vector Helmholtz equations with divergence constraints

Urve Kangro, Roy Nicolaides (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.

Divergence forms of the infinity-Laplacian.

Luigi D'Onofrio, Flavia Giannetti, Tadeusz Iwaniec, Juan Manfredi, Teresa Radice (2006)

Publicacions Matemàtiques

The central theme running through our investigation is the infinity-Laplacian operator in the plane. Upon multiplication by a suitable function we express it in divergence form, this allows us to speak of weak infinity-harmonic function in W1,2. To every infinity-harmonic function u we associate its conjugate function v. We focus our attention to the first order Beltrami type equation for h= u + iv

Does Atkinson-Wilcox Expansion Converges for any Convex Domain?

Arnaoudov, I., Georgiev, V., Venkov, G. (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35C10, 35C20, 35P25, 47A40, 58D30, 81U40.The Atkinson-Wilcox theorem claims that any scattered field in the exterior of a sphere can be expanded into a uniformly and absolutely convergent series in inverse powers of the radial variable and that once the leading coefficient of the expansion is known the full series can be recovered uniquely through a recurrence relation. The leading coefficient of the series is known as the scattering amplitude or the far...

Domain optimization in 3 D -axisymmetric elliptic problems by dual finite element method

Ivan Hlaváček (1990)

Aplikace matematiky

An axisymmetric second order elliptic problem with mixed boundary conditions is considered. The shape of the domain has to be found so as to minimize a cost functional, which is given in terms of the cogradient of the solution. A new dual finite element method is used for approximate solutions. The existence of an optimal domain is proven and a convergence analysis presented.

Domain optimization in axisymmetric elliptic boundary value problems by finite elements

Ivan Hlaváček (1988)

Aplikace matematiky

An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces.

Doubling properties and unique continuation at the boundary for elliptic operators with singular magnetic fields

Xiangxing Tao (2002)

Studia Mathematica

Let u be a solution to a second order elliptic equation with singular magnetic fields, vanishing continuously on an open subset Γ of the boundary of a Lipschitz domain. An elementary proof of the doubling property for u² over balls centered at some points near Γ is presented. Moreover, we get the unique continuation at the boundary of Dini domains for elliptic operators.

Dual finite element analysis for elliptic problems with obstacles on the boundary. I

Ivan Hlaváček (1977)

Aplikace matematiky

For an elliptic model problem with non-homogeneous unilateral boundary conditions, two dual variational formulations are presented and justified on the basis of a saddle point theorem. Using piecewise linear finite element models on the triangulation of the given domain, dual numerical procedures are proposed. By means of one-sided approximations, some a priori error estimates are proved, assuming that the solution is sufficiently smooth. A posteriori error estimates and two-sided bounds for the...

Dual finite element analysis of axisymmetric elliptic problems with an absolute term

Ivan Hlaváček (1991)

Applications of Mathematics

A model second order elliptic equation in cylindrical coordinates with mixed boundary conditions is considered. A dual variational formulation is employed to calculate the cogradient of the solution directly. Approximations are defined on the basis of standard finite elements spaces. Convergence analysis and some a posteriori error estimates are presented.

Currently displaying 81 – 100 of 109