Existence and multiplicity of weak solutions for a class of degenerate nonlinear elliptic equations.
We revisit Kristály’s result on the existence of weak solutions of the Schrödinger equation of the form -Δu + a(x)u = λb(x)f(u), , , where λ is a positive parameter, a and b are positive functions, while is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri’s recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.
We study eigenvalue problems with discontinuous terms. In particular we consider two problems: a nonlinear problem and a semilinear problem for elliptic equations. In order to study the existence of solutions we replace these two problems with their multivalued approximations and, for the first problem, we estabilish an existence result while for the second problem we prove the existence of multiple nontrivial solutions. The approach used is variational.
In this paper we give some existence and nonexistence results of non trivial solutions of nonlinear elliptic systems involving the p-Laplacian.
The main goal in this paper is to prove the existence of radial positive solutions of the quasilinear elliptic system⎧ -Δpu = f(x,u,v) in Ω,⎨ -Δqv = g(x,u,v) in Ω,⎩ u = v = 0 on ∂Ω,where Ω is a ball in RN and f, g are positive continuous functions satisfying f(x, 0, 0) = g(x, 0, 0) = 0 and some growth conditions which correspond, roughly speaking, to superlinear problems. Two different sets of conditions, called strongly and weakly coupled, are given in order to obtain existence. We use...
By a sub-super solution argument, we study the existence of positive solutions for the system ⎧ in Ω, ⎪ in Ω, ⎨u,v > 0 in Ω, ⎩u = v = 0 on ∂Ω, where Ω is a bounded domain in with smooth boundary or . A nonexistence result is obtained for radially symmetric solutions.
We consider the existence and nonexistence of solutions for the following singular quasi-linear elliptic problem with concave and convex nonlinearities: ⎧ , x ∈ Ω, ⎨ ⎩ , x ∈ ∂Ω, where Ω is an exterior domain in , that is, , where D is a bounded domain in with smooth boundary ∂D(=∂Ω), and 0 ∈ Ω. Here λ > 0, 0 ≤ a < (N-p)/p, 1 < p< N, ∂/∂ν is the outward normal derivative on ∂Ω. By the variational method, we prove the existence of multiple solutions. By the test function method,...
In this work we study the problem in , in , on , in , is a bounded regular domain such that , , , , and are positive functions such...