Discontinuous parabolic problems with a nonlocal initial condition.
Boucherif, Abdelkader (2011)
Boundary Value Problems [electronic only]
Andrzej Karafiat (1991)
Annales Polonici Mathematici
Jürgen Geiser (2009)
ESAIM: Mathematical Modelling and Numerical Analysis
Our studies are motivated by a desire to model long-time simulations of possible scenarios for a waste disposal. Numerical methods are developed for solving the arising systems of convection-diffusion-dispersion-reaction equations, and the received results of several discretization methods are presented. We concentrate on linear reaction systems, which can be solved analytically. In the numerical methods, we use large time-steps to achieve long simulation times of about 10 000 years. We propose...
Eydenberg, Michael, Mariani, Maria Christina (2009)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Fabrice Bethuel, Giandomenico Orlandi, Didier Smets (2006/2007)
Séminaire Équations aux dérivées partielles
Martin A. Grepl, Yvon Maday, Ngoc C. Nguyen, Anthony T. Patera (2007)
ESAIM: Mathematical Modelling and Numerical Analysis
In this paper, we extend the reduced-basis approximations developed earlier for linear elliptic and parabolic partial differential equations with affine parameter dependence to problems involving (a) nonaffine dependence on the parameter, and (b) nonlinear dependence on the field variable. The method replaces the nonaffine and nonlinear terms with a coefficient function approximation which then permits an efficient offline-online computational decomposition. We first review the coefficient function...
J.H. Sampson (1982)
Manuscripta mathematica
Wilhelm Heinrichs (1991)
Applications of Mathematics
Für die Lösungen seminlinearer parabolischer Differentialgleichungen werden Einschliessungsaussagen hergeleitet. Hierbei werden Aussagen zur Stabilität von Lösungen ermittelt. Die Resultate werden am Beispiel der Fitzhugh-Nagumo Gleichungen diskutiert.
Grigorescu, Ilie, Kang, Min (2007)
Electronic Journal of Probability [electronic only]
Zhiming Chen, Ricardo H. Nochetto, Alfred Schmidt (2000)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Zhiming Chen, Ricardo H. Nochetto, Alfred Schmidt (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
The phase relaxation model is a diffuse interface model with small parameter ε which consists of a parabolic PDE for temperature θ and an ODE with double obstacles for phase variable χ. To decouple the system a semi-explicit Euler method with variable step-size τ is used for time discretization, which requires the stability constraint τ ≤ ε. Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter h are further employed for space discretization. A posteriori...
Nalimov, V.I. (2004)
Sibirskij Matematicheskij Zhurnal
K. Kunisch, G. Peichl (1991)
Numerische Mathematik
Frank Merle, Hatem Zaag (1996/1997)
Séminaire Équations aux dérivées partielles
Elias A. Lipitakis (1990)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Agnieszka Herczak, Michał Olech (2009)
Banach Center Publications
We investigate a system describing electrically charged particles in the whole space ℝ². Our main goal is to describe large time behavior of solutions which start their evolution from initial data of small size. This is achieved using radially symmetric self-similar solutions.
Kobayashi, Yasumaro (2010)
Advances in Difference Equations [electronic only]
Boumediene Abdellaoui, Eduardo Colorado, Ireneo Peral (2004)
Journal of the European Mathematical Society
In this work we study the problem in , in , on , in , is a bounded regular domain such that , , , , and are positive functions such...
Chen, Caisheng, Shi, Lanfang, Wang, Hui (2009)
Boundary Value Problems [electronic only]
Ishiwata, Michinori, Ogawa, Takayoshi, Takahashi, Futoshi (2009)
Electronic Journal of Differential Equations (EJDE) [electronic only]