Page 1

Displaying 1 – 11 of 11

Showing per page

Finite-dimensional pullback attractors for parabolic equations with Hardy type potentials

Cung The Anh, Ta Thi Hong Yen (2011)

Annales Polonici Mathematici

Using the asymptotic a priori estimate method, we prove the existence of a pullback -attractor for a reaction-diffusion equation with an inverse-square potential in a bounded domain of N (N ≥ 3), with the nonlinearity of polynomial type and a suitable exponential growth of the external force. Then under some additional conditions, we show that the pullback -attractor has a finite fractal dimension and is upper semicontinuous with respect to the parameter in the potential.

Flame Propagation through Large-Scale Vortical Flows: Effect of Equivalence Ratio

L. Kagan, G. Sivashinsky (2010)

Mathematical Modelling of Natural Phenomena

The present work is a continuation of previous studies of premixed gas flames spreading through a space-periodic array of large-scale vorticities, and is motivated by the experimentally known phenomenon of flame extinction by turbulence. The prior work dealt with the strongly non-stoichiometric limit where the reaction rate is controlled by a single (deficient) reactant. In the present study the discussion is extended over a physically more realistic formulation based on a bimolecular reaction...

Forced anisotropic mean curvature flow of graphs in relative geometry

Dieu Hung Hoang, Michal Beneš (2014)

Mathematica Bohemica

The paper is concerned with the graph formulation of forced anisotropic mean curvature flow in the context of the heteroepitaxial growth of quantum dots. The problem is generalized by including anisotropy by means of Finsler metrics. A semi-discrete numerical scheme based on the method of lines is presented. Computational results with various anisotropy settings are shown and discussed.

Front propagation for nonlinear diffusion equations on the hyperbolic space

Hiroshi Matano, Fabio Punzo, Alberto Tesei (2015)

Journal of the European Mathematical Society

We study the Cauchy problem in the hyperbolic space n ( n 2 ) for the semilinear heat equation with forcing term, which is either of KPP type or of Allen-Cahn type. Propagation and extinction of solutions, asymptotical speed of propagation and asymptotical symmetry of solutions are addressed. With respect to the corresponding problem in the Euclidean space n new phenomena arise, which depend on the properties of the diffusion process in n . We also investigate a family of travelling wave solutions, named...

Full discretization of some reaction diffusion equation with blow up

Geneviève Barro, Benjamin Mampassi, Longin Some, Jean Ntaganda, Ousséni So (2006)

Open Mathematics

This paper aims at the development of numerical schemes for nonlinear reaction diffusion problems with a convection that blows up in a finite time. A full discretization of this problem that preserves the blow - up property is presented as well as a numerical simulation. Efficiency of the method is derived via a numerical comparison with a classical scheme based on the Runge Kutta scheme.

Currently displaying 1 – 11 of 11

Page 1