The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The -stability (instability) of a binary nonlinear reaction diffusion system of P.D.E.s - either under Dirichlet or Neumann boundary data - is considered. Conditions allowing the reduction to a stability (instability) problem for a linear binary system of O.D.E.s are furnished. A peculiar Liapunov functional linked (together with the time derivative along the solutions) by direct simple relations to the eigenvalues, is used.
Consider a one dimensional nonlinear reaction-diffusion equation
(KPP equation) with non-homogeneous second order term, discontinuous
initial condition and small parameter. For points ahead
of the Freidlin-KPP front, the solution tends to 0 and we obtain
sharp asymptotics (i.e. non logarithmic). Our study follows the
work of Ben Arous and Rouault who solved this problem in the
homogeneous case. Our proof is probabilistic, and is based on
the Feynman-Kac formula and the large deviation principle...
We consider the following reaction-diffusion equation:
where .
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)]
it was shown that
in the case of ,
the above problem (KS) is solvable globally in time for “small data”.
Moreover,
the decay of the solution (u,v) in
was proved.
In this paper, we consider
the case of “ and
small data” with any fixed
and show that
(i)
there exists a time global solution (u,v) of (KS) and
it decays to...
Theoretical framework for linear stability of an anomalous sub-diffusive
activator-inhibitor system is set. Generalized Turing instability conditions are found to depend on
anomaly exponents of various species. In addition to monotonous instability, known from
normal diffusion, in an anomalous system oscillatory modes emerge. For equal anomaly
exponents for both species the type of unstable modes is determined by the ratio of the reactants'
diffusion coefficients. When the ratio exceeds its normal...
Relaxation oscillations are limit cycles with two clearly different
time scales. In this article the spatio-temporal dynamics of a
standard prey-predator system in the parameter region of relaxation
oscillation is investigated. Both prey and predator population are
distributed irregularly at a relatively high average level between a
maximal and a minimal value. However, the slowly developing complex
pattern exhibits a feature of “inverse excitability”: Both
populations show collapses which occur...
The aim of this paper is to present some approaches to tumour growth modelling using the logistic equation. As the first approach the well-known ordinary differential equation is used to model the EAT in mice. For the same kind of tumour, a logistic equation with time delay is also used. As the second approach, a logistic equation with diffusion is proposed. In this case a delay argument in the reaction term is also considered. Some mathematical properties of the presented models are studied in...
We give a sufficient condition for the existence of a Lyapunov function for the system
aₜ = ∇(k(a,c)∇a - h(a,c)∇c), x ∈ Ω, t > 0,
, x ∈ Ω, t > 0,
for , completed with either a = c = 0, or
∂a/∂n = ∂c/∂n = 0, or k(a,c) ∂a/∂n = h(a,c) ∂c/∂n, c = 0 on ∂Ω × t > 0.
Furthermore we study the asymptotic behaviour of the solution and give some uniform -estimates.
In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction...
Currently displaying 1 –
14 of
14