Page 1

Displaying 1 – 14 of 14

Showing per page

Uniform a priori estimates for discrete solution of nonlinear tensor diffusion equation in image processing

Olga Drblíková (2007)

Kybernetika

This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see [Coirier1] and [Coirier2]). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient...

Uniqueness and stability properties of monostable pulsating fronts

François Hamel, Lionel Roques (2011)

Journal of the European Mathematical Society

We prove the uniqueness, up to shifts, of pulsating traveling fronts for reaction-diffusion equations in periodic media with Kolmogorov–Petrovskiĭ–Piskunov type nonlinearities. These results provide in particular a complete classification of all KPP pulsating fronts. Furthermore, in the more general case of monostable nonlinearities, we also derive several global stability properties and convergence to pulsating fronts for solutions of the Cauchy problem with front-like initial data. In particular,...

Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay

W. Huang, M. Han, M. Puckett (2009)

Mathematical Modelling of Natural Phenomena

Many models in biology and ecology can be described by reaction-diffusion equations wit time delay. One of important solutions for these type of equations is the traveling wave solution that shows the phenomenon of wave propagation. The existence of traveling wave fronts has been proved for large class of equations, in particular, the monotone systems, such as the cooperative systems and some competition systems. However, the problem on the uniqueness of traveling wave (for a fixed wave speed)...

Uniqueness of the boundary behavior for large solutions to a degenerate elliptic equation involving the ∞-Laplacian.

Gregorio Díaz, Jesús Ildefonso Díaz (2003)

RACSAM

En esta nota estimamos la tasa máxima de crecimiento en la frontera de las soluciones de viscosidad de -Δ∞u + λ|u|m-1u = f en Ω (λ > 0, m > 3).De hecho, mostramos que sólo hay una única tasa de explosión en la frontera para esas soluciones explosivas. También obtenemos una versión del Teorema de Liouville para el caso Ω = RN.

Upper Hausdorff dimension estimates for invariant sets of evolutionary systems on Hilbert manifolds

Kruck, Amina, Reitmann, Volker (2017)

Proceedings of Equadiff 14

We prove a generalization of the Douady-Oesterlé theorem on the upper bound of the Hausdorff dimension of an invariant set of a smooth map on an infinite dimensional manifold. It is assumed that the linearization of this map is a noncompact linear operator. A similar estimate is given for the Hausdorff dimension of an invariant set of a dynamical system generated by a differential equation on a Hilbert manifold.

Currently displaying 1 – 14 of 14

Page 1