Page 1

Displaying 1 – 18 of 18

Showing per page

Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE

E. Grenier, V. Louvet, P. Vigneaux (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Parameter estimation in non linear mixed effects models requires a large number of evaluations of the model to study. For ordinary differential equations, the overall computation time remains reasonable. However when the model itself is complex (for instance when it is a set of partial differential equations) it may be time consuming to evaluate it for a single set of parameters. The procedures of population parametrization (for instance using SAEM algorithms) are then very long and in some cases...

Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies

Max Duarte, Marc Massot, Stéphane Descombes (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we investigate the coupling between operator splitting techniques and a time parallelization scheme, the parareal algorithm, as a numerical strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive...

Parareal operator splitting techniques for multi-scale reaction waves: Numerical analysis and strategies

Max Duarte, Marc Massot, Stéphane Descombes (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we investigate the coupling between operator splitting techniques and a time parallelization scheme, the parareal algorithm, as a numerical strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive...

Partly dissipative systems in uniformly local spaces

Alexandre N. Carvalho, Tomasz Dlotko (2004)

Colloquium Mathematicae

We study the existence of attractors for partly dissipative systems in ℝⁿ. For these systems we prove the existence of global attractors with attraction properties and compactness in a slightly weaker topology than the topology of the phase space. We obtain abstract results extending the usual theory to encompass such two-topologies attractors. These results are applied to the FitzHugh-Nagumo equations in ℝⁿ and to Field-Noyes equations in ℝ. Some embeddings between uniformly local spaces are also...

Pattern and Waves for a Model in Population Dynamics with Nonlocal Consumption of Resources

S. Genieys, V. Volpert, P. Auger (2010)

Mathematical Modelling of Natural Phenomena

We study a reaction-diffusion equation with an integral term describing nonlocal consumption of resources in population dynamics. We show that a homogeneous equilibrium can lose its stability resulting in appearance of stationary spatial structures. They can be related to the emergence of biological species due to the intra-specific competition and random mutations. Various types of travelling waves are observed.

Pattern Formation Induced by Time-Dependent Advection

A. V. Straube, A. Pikovsky (2010)

Mathematical Modelling of Natural Phenomena

We study pattern-forming instabilities in reaction-advection-diffusion systems. We develop an approach based on Lyapunov-Bloch exponents to figure out the impact of a spatially periodic mixing flow on the stability of a spatially homogeneous state. We deal with the flows periodic in space that may have arbitrary time dependence. We propose a discrete in time model, where reaction, advection, and diffusion act as successive operators, and show that...

Periodic solutions of a three-species periodic reaction-diffusion system

Tiantian Qiao, Jiebao Sun, Boying Wu (2011)

Annales Polonici Mathematici

We study a periodic reaction-diffusion system of a competitive model with Dirichlet boundary conditions. By the method of upper and lower solutions and an argument similar to that of Ahmad and Lazer, we establish the existence of periodic solutions and also investigate the stability and global attractivity of positive periodic solutions under certain conditions.

Periodic travelling waves

V. Hutson, K. Mischaikow (1999)

Banach Center Publications

Some new techniques for finding periodic travelling waves are discussed.

Phase field model for mode III crack growth in two dimensional elasticity

Takeshi Takaishi, Masato Kimura (2009)

Kybernetika

A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter ϵ > 0 and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method.

Pointwise convergence to the initial data for nonlocal dyadic diffusions

Marcelo Actis, Hugo Aimar (2016)

Czechoslovak Mathematical Journal

We solve the initial value problem for the diffusion induced by dyadic fractional derivative s in + . First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator....

Population Growth and Persistence in a Heterogeneous Environment: the Role of Diffusion and Advection

A. B. Ryabov, B. Blasius (2008)

Mathematical Modelling of Natural Phenomena

The spatio-temporal dynamics of a population present one of the most fascinating aspects and challenges for ecological modelling. In this article we review some simple mathematical models, based on one dimensional reaction-diffusion-advection equations, for the growth of a population on a heterogeneous habitat. Considering a number of models of increasing complexity we investigate the often contrary roles of advection and diffusion for the persistence of the population. When it is possible we demonstrate...

Positive solutions for concave-convex elliptic problems involving p ( x ) -Laplacian

Makkia Dammak, Abir Amor Ben Ali, Said Taarabti (2022)

Mathematica Bohemica

We study the existence and nonexistence of positive solutions of the nonlinear equation - Δ p ( x ) u = λ k ( x ) u q ± h ( x ) u r in Ω , u = 0 on Ω where Ω N , N 2 , is a regular bounded open domain in N and the p ( x ) -Laplacian Δ p ( x ) u : = div ( | u | p ( x ) - 2 u ) is introduced for a continuous function p ( x ) > 1 defined on Ω . The positive parameter λ induces the bifurcation phenomena. The study of the equation (Q) needs generalized Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some variational methods still work. We use them to prove the existence of positive solutions...

Currently displaying 1 – 18 of 18

Page 1