Previous Page 3

Displaying 41 – 53 of 53

Showing per page

Regularity and uniqueness in quasilinear parabolic systems

Pavel Krejčí, Lucia Panizzi (2011)

Applications of Mathematics

Inspired by a problem in steel metallurgy, we prove the existence, regularity, uniqueness, and continuous data dependence of solutions to a coupled parabolic system in a smooth bounded 3D domain, with nonlinear and nonhomogeneous boundary conditions. The nonlinear coupling takes place in the diffusion coefficient. The proofs are based on anisotropic estimates in tangential and normal directions, and on a refined variant of the Gronwall lemma.

Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices

Sören Bartels (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...

Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices

Sören Bartels (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...

The finite speed of propagation of solutions of the Neumann problem of a degenerate parabolic equation

Jiaqing Pan (2011)

Open Mathematics

In this paper the finite speed of propagation of solutions and the continuous dependence on the nonlinearity of a degenerate parabolic partial differential equation are discussed. Our objective is to derive an explicit expression for the speed of propagation and the large time behavior of the solution and to show that the solution continuously depends on the nonlinearity of the equation.

Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data

Amy Poh Ai Ling, Masahiko Shimojō (2019)

Mathematica Bohemica

We consider solutions of quasilinear equations u t = Δ u m + u p in N with the initial data u 0 satisfying 0 < u 0 < M and lim | x | u 0 ( x ) = M for some constant M > 0 . It is known that if 0 < m < p with p > 1 , the blow-up set is empty. We find solutions u that blow up throughout N when m > p > 1 .

Vectorial quasilinear diffusion equation with dynamic boundary condition

Nakayashiki, Ryota (2017)

Proceedings of Equadiff 14

In this paper, we consider a class of initial-boundary value problems for quasilinear PDEs, subject to the dynamic boundary conditions. Each initial-boundary problem is denoted by (S) ε with a nonnegative constant ε , and for any ε 0 , (S) ε can be regarded as a vectorial transmission system between the quasilinear equation in the spatial domain Ω , and the parabolic equation on the boundary Γ : = Ω , having a sufficient smoothness. The objective of this study is to establish a mathematical method, which can...

Volume Filling Effect in Modelling Chemotaxis

D. Wrzosek (2010)

Mathematical Modelling of Natural Phenomena

The oriented movement of biological cells or organisms in response to a chemical gradient is called chemotaxis. The most interesting situation related to self-organization phenomenon takes place when the cells detect and response to a chemical which is secreted by themselves. Since pioneering works of Patlak (1953) and Keller and Segel (1970) many particularized models have been proposed to describe the aggregation phase of this process. Most of...

Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p -summable right-hand side

Pierre-Etienne Druet (2010)

Applications of Mathematics

We consider a model for transient conductive-radiative heat transfer in grey materials. Since the domain contains an enclosed cavity, nonlocal radiation boundary conditions for the conductive heat-flux are taken into account. We generalize known existence and uniqueness results to the practically relevant case of lower integrable heat-sources, and of nonsmooth interfaces. We obtain energy estimates that involve only the L p norm of the heat sources for exponents p close to one. Such estimates are...

Currently displaying 41 – 53 of 53

Previous Page 3