Displaying 61 – 80 of 453

Showing per page

Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity

Olaf Klein (2004)

Applications of Mathematics

The asymptotic behaviour for t of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress...

Asymptotic self-similar blow-up for a model of aggregation

Ignacio Guerra (2004)

Banach Center Publications

In this article we consider a system of equations that describes a class of mass-conserving aggregation phenomena, including gravitational collapse and bacterial chemotaxis. In spatial dimensions strictly larger than two, and under the assumptions of radial symmetry, it is known that this system has at least two stable mechanisms of singularity formation (see e.g. M. P. Brenner et al. 1999, Nonlinearity 12, 1071-1098); one type is self-similar, and may be viewed as a trade-off between diffusion...

Barriers for a class of geometric evolution problems

Giovanni Bellettini, Matteo Novaga (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We present some general results on minimal barriers in the sense of De Giorgi for geometric evolution problems. We also compare minimal barriers with viscosity solutions for fully nonlinear geometric problems of the form u t + F t , x , u , 2 u = 0 . If F is not degenerate elliptic, it turns out that we obtain the same minimal barriers if we replace F with F + , which is defined as the smallest degenerate elliptic function above F .

Blow-up behavior in nonlocal vs local heat equations

Philippe Souplet (2000)

Banach Center Publications

We present some recent results on the blow-up behavior of solutions of heat equations with nonlocal nonlinearities. These results concern blow-up sets, rates and profiles. We then compare them with the corresponding results in the local case, and we show that the two types of problems exhibit "dual" blow-up behaviors.

Blow-up of nonnegative solutions to quasilinear parabolic inequalities

Stanislav I. Pohozaev, Alberto Tesei (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We investigate critical exponents for blow-up of nonnegative solutions to a class of parabolic inequalities. The proofs make use of a priori estimates of solutions combined with a simple scaling argument.

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions of the ordinary...

Currently displaying 61 – 80 of 453