Page 1

Displaying 1 – 5 of 5

Showing per page

Invariants, conservation laws and time decay for a nonlinear system of Klein-Gordon equations with Hamiltonian structure

Changxing Miao, Youbin Zhu (2006)

Applicationes Mathematicae

We discuss invariants and conservation laws for a nonlinear system of Klein-Gordon equations with Hamiltonian structure ⎧ u t t - Δ u + m ² u = - F ( | u | ² , | v | ² ) u , ⎨ ⎩ v t t - Δ v + m ² v = - F ( | u | ² , | v | ² ) v for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). Based on Morawetz-type identity, we prove that solutions to the above system decay to zero in local L²-norm, and local energy also decays to zero if the initial energy satisfies E ( u , v , , 0 ) = 1 / 2 ( | u ( 0 ) | ² + | u t ( 0 ) | ² + m ² | u ( 0 ) | ² + | v ( 0 ) | ² + | v t ( 0 ) | ² + m ² | v ( 0 ) | ² + F ( | u ( 0 ) | ² , | v ( 0 ) | ² ) ) d x < , and F₁(|u|²,|v|²)|u|² + F₂(|u|²,|v|²)|v|² - F(|u|²,|v|²) ≥ aF(|u|²,|v|²) ≥ 0, a > 0.

Currently displaying 1 – 5 of 5

Page 1