Page 1

Displaying 1 – 14 of 14

Showing per page

Carleman estimates for the non-stationary Lamé system and the application to an inverse problem

Oleg Yu. Imanuvilov, Masahiro Yamamoto (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we establish Carleman estimates for the two dimensional isotropic non-stationary Lamé system with the zero Dirichlet boundary conditions. Using this estimate, we prove the uniqueness and the stability in determining spatially varying density and two Lamé coefficients by a single measurement of solution over ( 0 , T ) × ω , where T > 0 is a sufficiently large time interval and a subdomain ω satisfies a non-trapping condition.

Carleman estimates for the non-stationary Lamé system and the application to an inverse problem

Oleg Yu. Imanuvilov, Masahiro Yamamoto (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we establish Carleman estimates for the two dimensional isotropic non-stationary Lamé system with the zero Dirichlet boundary conditions. Using this estimate, we prove the uniqueness and the stability in determining spatially varying density and two Lamé coefficients by a single measurement of solution over (0,T) x ω, where T > 0 is a sufficiently large time interval and a subdomain ω satisfies a non-trapping condition.

Cauchy data on a manifold

Yvonne Choquet-Bruhat, Demetrios Christodoulou, Mauro Francaviglia (1978)

Annales de l'I.H.P. Physique théorique

Computation of the fundamental solution of electrodynamics for anisotropic materials

Valery Yakhno, Handan Yaslan, Tatiana Yakhno (2012)

Open Mathematics

A new method for computation of the fundamental solution of electrodynamics for general anisotropic nondispersive materials is suggested. It consists of several steps: equations for each column of the fundamental matrix are reduced to a symmetric hyperbolic system; using the Fourier transform with respect to space variables and matrix transformations, formulae for Fourier images of the fundamental matrix columns are obtained; finally, the fundamental solution is computed by the inverse Fourier transform....

Currently displaying 1 – 14 of 14

Page 1