Page 1

Displaying 1 – 11 of 11

Showing per page

Régularité de la solution d'un problème de Cauchy fortement non linéaire à données singulières en un point

Jean-Yves Chemin (1989)

Annales de l'institut Fourier

Dans cet article, on étudie la régularité d’une solution réelle, appartenant à H s pour s assez grand, d’une équation aux dérivées partielles strictement hyperbolique et fortement non linéaire d’ordre deux. On suppose que les données de Cauchy sur une hypersurface spatiale lisse sont régulières en dehors d’un point, et ont une singularité conormale en ce point; on démontre alors que la réunion Γ des bicaractéristiques nulles issues de ce point est, en dehors de ce point, une hypersurface lisse et...

Remark on the null-condition for the nonlinear wave equation

Nickolay Tzvetkov (2000)

Bollettino dell'Unione Matematica Italiana

Dimostriamo l'esistenza della soluzione globale per un sistema di equazioni delle onde con nonlinearità quadratica dipendente dalle variabili spazio-tempo. Come in [3] la tecnica è basata sulla trasformazione di Penrose.

Remarks on Carleman estimates and exact controllability of the Lamé system

Oleg Yu. Imanuvilov, Masahiro Yamamoto (2002)

Journées équations aux dérivées partielles

In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.

Resolvent estimates and the decay of the solution to the wave equation with potential

Vladimir Georgiev (2001)

Journées équations aux dérivées partielles

We prove a weighted L estimate for the solution to the linear wave equation with a smooth positive time independent potential. The proof is based on application of generalized Fourier transform for the perturbed Laplace operator and a finite dependence domain argument. We apply this estimate to prove the existence of global small data solution to supercritical semilinear wave equations with potential.

Currently displaying 1 – 11 of 11

Page 1