Displaying 281 – 300 of 333

Showing per page

The geometrical quantity in damped wave equations on a square

Pascal Hébrard, Emmanuel Humbert (2006)

ESAIM: Control, Optimisation and Calculus of Variations

The energy in a square membrane Ω subject to constant viscous damping on a subset ω Ω decays exponentially in time as soon as ω satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate τ ( ω ) of this decay satisfies τ ( ω ) = 2 min ( - μ ( ω ) , g ( ω ) ) (see Lebeau [Math. Phys. Stud.19 (1996) 73–109]). Here μ ( ω ) denotes the spectral abscissa of the damped wave equation operator and  g ( ω ) is a number called the geometrical quantity of ω and defined as follows. A ray in Ω is the trajectory generated by the free motion...

Weak solutions to the initial boundary value problem for a semilinear wave equation with damping and source terms

Petronela Radu (2008)

Applicationes Mathematicae

We show local existence of solutions to the initial boundary value problem corresponding to a semilinear wave equation with interior damping and source terms. The difficulty in dealing with these two competitive forces comes from the fact that the source term is not a locally Lipschitz function from H¹(Ω) into L²(Ω) as typically assumed in the literature. The strategy behind the proof is based on the physics of the problem, so it does not use the damping present in the equation. The arguments are...

Currently displaying 281 – 300 of 333