Displaying 41 – 60 of 62

Showing per page

Theory and numerical approximations for a nonlinear 1 + 1 Dirac system

Nikolaos Bournaveas, Georgios E. Zouraris (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.

Theory and numerical approximations for a nonlinear 1 + 1 Dirac system

Nikolaos Bournaveas, Georgios E. Zouraris (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.

Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain

Hans Zwart, Yann Le Gorrec, Bernhard Maschke, Javier Villegas (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study a class of hyperbolic partial differential equations on a one dimensional spatial domain with control and observation at the boundary. Using the idea of feedback we show these systems are well-posed in the sense of Weiss and Salamon if and only if the state operator generates a C0-semigroup. Furthermore, we show that the corresponding transfer function is regular, i.e., has a limit for s going to infinity.

Currently displaying 41 – 60 of 62