Displaying 321 – 340 of 475

Showing per page

Oscillations of the solutions of nonlinear hyperbolic equations of neutral type.

D.P. Mishev, D.D. Bainov (1992)

Publicacions Matemàtiques

In this paper nonlinear hyperbolic equations of neutral type of a given form are considered, with certain boundary conditions. Under certain constraints on the coefficients of the equation and the boundary conditions, sufficient conditions for oscillation of the solutions of the problems considered are obtained.

P-adaptive Hermite methods for initial value problems∗

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

P-adaptive Hermite methods for initial value problems

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

P-adaptive Hermite methods for initial value problems∗

Ronald Chen, Thomas Hagstrom (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems...

Periodic solutions of nonlinear wave equations with non-monotone forcing terms

Massimiliano Berti, Luca Biasco (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Existence and regularity of periodic solutions of nonlinear, completely resonant, forced wave equations is proved for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov-Schmidt reduction. The corresponding infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness. This difficulty is overcome finding a-priori estimates for the constrained minimizers of the reduced action functional, through techniques inspired by regularity theory...

Perte de régularité pour les équations d’ondes sur-critiques

Gilles Lebeau (2005)

Bulletin de la Société Mathématique de France

On prouve que le problème de Cauchy local pour l’équation d’onde sur-critique dans d , u + u p = 0 , p impair, avec d 3 et p > ( d + 2 ) / ( d - 2 ) , est mal posé dans H σ pour tout σ ] 1 , σ crit [ , où σ crit = d / 2 - 2 / ( p - 1 ) est l’exposant critique.

Currently displaying 321 – 340 of 475