Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations.
Models introduced by R. F. Streater describe the evolution of the density and temperature of a cloud of self-gravitating particles. We study nonuniqueness of steady states in annular domains in , d ≥ 2.
We prove almost optimal local well-posedness for the coupled Dirac–Klein–Gordon (DKG) system of equations in dimensions. The proof relies on the null structure of the system, combined with bilinear spacetime estimates of Klainerman–Machedon type. It has been known for some time that the Klein–Gordon part of the system has a null structure; here we uncover an additional null structure in the Dirac equation, which cannot be seen directly, but appears after a duality argument.
In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...
In this article, we provide a priori error estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...