Radiation conditions and scattering theory for -particle hamiltonians (main ideas of the approach)
This paper is concerned with the global well-posedness and relaxation-time limits for the solutions in the full quantum hydrodynamic model, which can be used to analyze the thermal and quantum influences on the transport of carriers in semiconductor devices. For the Cauchy problem in , we prove the global existence, uniqueness and exponential decay estimate of smooth solutions, when the initial data are small perturbations of an equilibrium state. Moreover, we show that the solutions converge into...
We concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound from below the blow-up rate for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than , the expected one. Moreover, we state that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.
In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than , the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.
We consider Schrödinger operators on with variable coefficients. Let be the free Schrödinger operator and we suppose is a “short-range” perturbation of . Then, under the nontrapping condition, we show that the time evolution operator: can be written as a product of the free evolution operator and a Fourier integral operator which is associated to the canonical relation given by the classical mechanical scattering. We also prove a similar result for the wave operators. These results...