Displaying 241 – 260 of 280

Showing per page

Time Domain Decomposition in Final Value Optimal Control of the Maxwell System

John E. Lagnese, G. Leugering (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time...

Time-dependent electromagnetic waves in a cavity

Bo Kjellmert, Thomas Strömberg (2009)

Applications of Mathematics

The electromagnetic initial-boundary value problem for a cavity enclosed by perfectly conducting walls is considered. The cavity medium is defined by its permittivity and permeability which vary continuously in space. The electromagnetic field comes from a source in the cavity. The field is described by a magnetic vector potential 𝐀 satisfying a wave equation with initial-boundary conditions. This description through 𝐀 is rigorously shown to give a unique solution of the problem and is the starting...

Upper bounds for a class of energies containing a non-local term

Arkady Poliakovsky (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we construct upper bounds for families of functionals of the form E ε ( φ ) : = Ω ε | φ | 2 + 1 ε W ( φ ) d x + 1 ε N | H ¯ F ( φ ) | 2 d x where Δ H ¯ u = div { χ Ω u}. Particular cases of such functionals arise in Micromagnetics. We also use our technique to construct upper bounds for functionals that appear in a variational formulation of the method of vanishing viscosity for conservation laws.

Well-posedness for systems representing electromagnetic/acoustic wavefront interaction

H. T. Banks, J. K. Raye (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider dispersive electromagnetic systems in dielectric materials in the presence of acoustic wavefronts. A theory for existence, uniqueness, and continuous dependence on data is presented for a general class of systems which include acoustic pressure-dependent Debye polarization models for dielectric materials.

Well-posedness for Systems Representing Electromagnetic/Acoustic Wavefront Interaction

H. T. Banks, J. K. Raye (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider dispersive electromagnetic systems in dielectric materials in the presence of acoustic wavefronts. A theory for existence, uniqueness, and continuous dependence on data is presented for a general class of systems which include acoustic pressure-dependent Debye polarization models for dielectric materials.

Currently displaying 241 – 260 of 280