Remarks on the relativistic self-dual Maxwell-Chern-Simons-Higgs system.
We give a review of results on the initial value problem for the Vlasov--Poisson system, concentrating on the main ingredients in the proof of global existence of classical solutions.
We provide estimates for a transport equation which contains singular integral operators. The form of the equation was motivated by the study of Kirchhoff–Sobolev parametrices in a Lorentzian space-time satisfying the Einstein equations. While our main application is for a specific problem in General Relativity we believe that the phenomenon which our result illustrates is of a more general interest.
We establish necessary and sufficient conditions on the real- or complex-valued potential defined on for the relativistic Schrödinger operator to be bounded as an operator from the Sobolev space to its dual .
Dans cet article on étudie le problème de l’unicité locale pour le système de Lamé. On prouve qu’on a l’unicité de Cauchy par rapport à toute surface non caractéristique. Nous donnons également deux résultats de densité qui s’applique à la théorie du contrôle pour le système de Lamé.
In this paper, we study the uniqueness problem for the Lamé system. We prove that we have the uniqueness property across any non characteristic surface. We also give two results which apply to the boundary controllability for the Lamé system.
We review some well posed formulations of the evolution part of the Cauchy problem of General Relativity that we have recently obtained. We include also a new first order symmetric hyperbolic system based directly on the Riemann tensor and the full Bianchi identities. It has only physical characteristics and matter sources can be included. It is completely equivalent to our other system with these properties.