Displaying 161 – 180 of 434

Showing per page

On a model of rotating superfluids

Sylvia Serfaty (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity ω , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω , and the derivation of a limiting free-boundary problem.

On a model of rotating superfluids

Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity ω, and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω, and the derivation of a limiting free-boundary problem.

On irrotational flows through cascades of profiles in a layer of variable thickness

Miloslav Feistauer (1984)

Aplikace matematiky

The paper is devoted to the study of solvability of boundary value problems for the stream function, describing non-viscous, irrotional, subsonic flowes through cascades of profiles in a layer of variable thickness. From the definition of a classical solution the variational formulation is derive and the concept of a weak solution is introduced. The proof of the existence and uniqueness of the weak solution is based on the monotone operator theory.

Currently displaying 161 – 180 of 434