The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 141 –
160 of
508
The local-in-time existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion is proved. We show the existence of solutions with lowest possible regularity for this problem such that with r>3. The existence is proved by the method of successive approximations where the solvability of the Cauchy-Neumann problem for the Stokes system is applied. We have to underline that in the -approach the Lagrangian coordinates must be used. We are looking...
We consider the motion of a viscous compressible barotropic fluid in ℝ³ bounded by a free surface which is under constant exterior pressure, both with surface tension and without it. In the first case we prove local existence of solutions in anisotropic Hilbert spaces with noninteger derivatives. In the case without surface tension the anisotropic Sobolev spaces with integration exponent p > 3 are used to omit the coefficients which are increasing functions of 1/T, where T is the existence time....
The motion of a viscous compressible heat conducting fluid in a domain in ℝ³ bounded by a free surface is considered. We prove local existence and uniqueness of solutions in Sobolev-Slobodetskiĭ spaces in two cases: with surface tension and without it.
The local existence of solutions for the compressible Navier-Stokes equations with the Dirichlet boundary conditions in the -framework is proved. Next an almost-global-in-time existence of small solutions is shown. The considerations are made in Lagrangian coordinates. The result is sharp in the -approach, because the velocity belongs to with r > 3.
Energy functionals for the Preisach hysteresis operator are used for proving the existence of weak periodic solutions of the one-dimensional systems of Maxwell equations with hysteresis for not too large right-hand sides. The upper bound for the speed of propagation of waves is independent of the hysteresis operator.
We consider the flow of a non-homogeneous viscous incompressible fluid which is known at an initial time. Our purpose is to prove that, when is smooth enough, there exists a local strong regular solution (which is global for small regular data).
In the paper the motion of a fixed mass of a viscous compressible heat conducting fluid is considered. Assuming that the initial data are sufficiently close to an equilibrium state and the external force, the heat sources and the heat flow through the boundary vanish, we prove the existence of a global in time solution which is close to the equilibrium state for any moment of time.
The motion of a fixed mass of a viscous compressible heat conducting capillary fluid is examined. Assuming that the initial data are sufficiently close to a constant state and the external force vanishes we prove the existence of a global-in-time solution which is close to the constant state for any moment of time. Moreover, we present an analogous result for the case of a barotropic viscous compressible fluid.
Currently displaying 141 –
160 of
508