Page 1 Next

Displaying 1 – 20 of 140

Showing per page

Nash equilibria for a model of traffic flow with several groups of drivers

Alberto Bressan, Ke Han (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Traffic flow is modeled by a conservation law describing the density of cars. It is assumed that each driver chooses his own departure time in order to minimize the sum of a departure and an arrival cost. There are N groups of drivers, The i-th group consists of κi drivers, sharing the same departure and arrival costs ϕi(t),ψi(t). For any given population sizes κ1,...,κn, we prove the existence of a Nash equilibrium solution, where no driver can lower his own total cost by choosing a different departure...

Navier-Stokes equations on unbounded domains with rough initial data

Peer Christian Kunstmann (2010)

Czechoslovak Mathematical Journal

We consider the Navier-Stokes equations in unbounded domains Ω n of uniform C 1 , 1 -type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded H -calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.

Néel and Cross-Tie wall energies for planar micromagnetic configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study a two-dimensional model for micromagnetics, which consists in an energy functional over S 2 -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations


We study a two-dimensional model for micromagnetics, which consists in an energy functional over S2-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

New regularity results for a generic model equation in exterior 3D domains

Stanislav Kračmar, Patrick Penel (2005)

Banach Center Publications

We consider a generic scalar model for the Oseen equations in an exterior three-dimensional domain. We assume the case of a non-constant coefficient function. Using a variational approach we prove new regularity properties of a weak solution whose existence and uniqueness in anisotropically weighted Sobolev spaces were proved in [10]. Because we use some facts and technical tools proved in the above mentioned paper, we give also a brief review of its results and methods.

New Results in Velocity Averaging

François Golse (2001/2002)

Séminaire Équations aux dérivées partielles

This paper discusses two new directions in velocity averaging. One is an improvement of the known velocity averaging results for L 1 functions. The other shows how to adapt some of the ideas of velocity averaging to a situation that is essentially a new formulation of the Vlasov-Maxwell system.

Currently displaying 1 – 20 of 140

Page 1 Next