Page 1 Next

Displaying 1 – 20 of 125

Showing per page

Machine Computation Using the Exponentially Convergent Multiscale Spectral Generalized Finite Element Method

Ivo Babuška, Xu Huang, Robert Lipton (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A multiscale spectral generalized finite element method (MS-GFEM) is presented for the solution of large two and three dimensional stress analysis problems inside heterogeneous media. It can be employed to solve problems too large to be solved directly with FE techniques and is designed for implementation on massively parallel machines. The method is multiscale in nature and uses an optimal family of spectrally defined local basis functions over a coarse grid. It is proved that the method has an...

Macroscopic models of collective motion and self-organization

Pierre Degond, Amic Frouvelle, Jian-Guo Liu, Sebastien Motsch, Laurent Navoret (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH model and discuss it in view...

Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint

Ayman Kachmar (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.

Magnetization switching on small ferromagnetic ellipsoidal samples

François Alouges, Karine Beauchard (2009)

ESAIM: Control, Optimisation and Calculus of Variations

The study of small magnetic particles has become a very important topic, in particular for the development of technological devices such as those used for magnetic recording. In this field, switching the magnetization inside the magnetic sample is of particular relevance. We here investigate mathematically this problem by considering the full partial differential model of Landau-Lifschitz equations triggered by a uniform (in space) external magnetic field.

Magnetization switching on small ferromagnetic ellipsoidal samples

François Alouges, Karine Beauchard (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The study of small magnetic particles has become a very important topic, in particular for the development of technological devices such as those used for magnetic recording. In this field, switching the magnetization inside the magnetic sample is of particular relevance. We here investigate mathematically this problem by considering the full partial differential model of Landau-Lifschitz equations triggered by a uniform (in space) external magnetic field.

Magneto-micropolar fluid motion: existence of weak solutions.

Marko A. Rojas-Medar, José Luiz Boldrini (1998)

Revista Matemática Complutense

By using the Galerkin method, we prove the existence of weak solutions for the equations of the magneto-micropolar fluid motion in two and three dimensions in space. In the two-dimensional case, we also prove that such weak solution is unique. We also prove the reproductive property.

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak solution...

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak...

Mathematical analysis of the stabilization of lamellar phases by a shear stress

V. Torri (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a 2D mathematical model describing the motion of a solution of surfactants submitted to a high shear stress in a Couette - Taylor system. We are interested in a stabilization process obtained thanks to the shear. We prove that, if the shear stress is large enough, there exists global in time solution for small initial data and that the solution of the linearized system (controlled by a nonconstant parameter) tends to 0 as t goes to infinity. This explains rigorously some experiments.

Mathematical analysis of the stabilization of lamellar phases by a shear stress

V. Torri (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a 2D mathematical model describing the motion of a solution of surfactants submitted to a high shear stress in a Couette-Taylor system. We are interested in a stabilization process obtained thanks to the shear. We prove that, if the shear stress is large enough, there exists global in time solution for small initial data and that the solution of the linearized system (controlled by a nonconstant parameter) tends to 0 as t goes to infinity. This explains rigorously some experiments. ...

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations...

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations...

Currently displaying 1 – 20 of 125

Page 1 Next