Page 1 Next

Displaying 1 – 20 of 508

Showing per page

On a 2D vector Poisson problem with apparently mutually exclusive scalar boundary conditions

Jean-Luc Guermond, Luigi Quartapelle, Jiang Zhu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work is devoted to the study of a two-dimensional vector Poisson equation with the normal component of the unknown and the value of the divergence of the unknown prescribed simultaneously on the entire boundary. These two scalar boundary conditions appear prima facie alternative in a standard variational framework. An original variational formulation of this boundary value problem is proposed here. Furthermore, an uncoupled solution algorithm is introduced together with its finite element...

On a Caginalp phase-field system with a logarithmic nonlinearity

Charbel Wehbe (2015)

Applications of Mathematics

We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.

On a certain two-sided symmetric condition in magnetic field analysis and computations

František Melkes, Alexander Ženíšek (1997)

Applications of Mathematics

A special two-sided condition for the incremental magnetic reluctivity is introduced which guarantees the unique existence of both the weak and the approximate solutions of the nonlinear stationary magnetic field distributed on a region composed of different media, as well as a certain estimate of the error between the two solutions. The condition, being discussed from the physical as well as the mathematical point of view, can be easily verified and is fulfilled for various magnetic reluctivity...

On a construction of weak solutions to non-stationary Stokes type equations by minimizing variational functionals and their regularity

Hiroshi Kawabi (2005)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we prove that the regularity property, in the sense of Gehring-Giaquinta-Modica, holds for weak solutions to non-stationary Stokes type equations. For the construction of solutions, Rothe's scheme is adopted by way of introducing variational functionals and of making use of their minimizers. Local estimates are carried out for time-discrete approximate solutions to achieve the higher integrability. These estimates for gradients do not depend on approximation.

On a diphasic low Mach number system

Stéphane Dellacherie (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a Diphasic Low Mach Number (DLMN) system for the modelling of diphasic flows without phase change at low Mach number, system which is an extension of the system proposed by Majda in [Center of Pure and Applied Mathematics, Berkeley, report No. 112] and [Combust. Sci. Tech. 42 (1985) 185–205] for low Mach number combustion problems. This system is written for a priori any equations of state. Under minimal thermodynamic hypothesis which are satisfied by a large class of generalized van...

On a diphasic low mach number system

Stéphane Dellacherie (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a Diphasic Low Mach Number (DLMN) system for the modelling of diphasic flows without phase change at low Mach number, system which is an extension of the system proposed by Majda in [Center of Pure and Applied Mathematics, Berkeley, report No. 112] and [Combust. Sci. Tech.42 (1985) 185–205] for low Mach number combustion problems. This system is written for a priori any equations of state. Under minimal thermodynamic hypothesis which are satisfied by a large class of generalized van...

Currently displaying 1 – 20 of 508

Page 1 Next