Displaying 201 – 220 of 231

Showing per page

Second order quasilinear functional evolution equations

László Simon (2015)

Mathematica Bohemica

We consider second order quasilinear evolution equations where also the main part contains functional dependence on the unknown function. First, existence of solutions in ( 0 , T ) is proved and examples satisfying the assumptions of the existence theorem are formulated. Then a uniqueness theorem is proved. Finally, existence and some qualitative properties of the solutions in ( 0 , ) (boundedness and stabilization as t ) are shown.

Semilinear hyperbolic functional equations

László Simon (2014)

Banach Center Publications

We consider second order semilinear hyperbolic functional differential equations where the lower order terms contain functional dependence on the unknown function. Existence and uniqueness of solutions for t ∈ (0,T), existence for t ∈ (0,∞) and some qualitative properties of the solutions in (0,∞) are shown.

The existence of Carathéodory solutions of hyperbolic functional differential equations

Adrian Karpowicz (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We consider the following Darboux problem for the functional differential equation ² u / x y ( x , y ) = f ( x , y , u ( x , y ) , u / x ( x , y ) , u / y ( x , y ) ) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b] 0 , a ] × ( 0 , b ] , where the function u ( x , y ) : [ - a , 0 ] × [ - b , 0 ] k is defined by u ( x , y ) ( s , t ) = u ( s + x , t + y ) for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.

The impact of unbounded swings of the forcing term on the asymptotic behavior of functional equations

Bhagat Singh (2000)

Czechoslovak Mathematical Journal

Necessary and sufficient conditions have been found to force all solutions of the equation ( r ( t ) y ' ( t ) ) ( n - 1 ) + a ( t ) h ( y ( g ( t ) ) ) = f ( t ) , to behave in peculiar ways. These results are then extended to the elliptic equation | x | p - 1 Δ y ( | x | ) + a ( | x | ) h ( y ( g ( | x | ) ) ) = f ( | x | ) where Δ is the Laplace operator and p 3 is an integer.

The linear-quadratic optimal control problem for delay differential equations

Gabriella Di Blasio (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro si considera il problema del controllo ottimo per un'equazione lineare con ritardo in uno spazio di Hilbert, con costo quadratico. Si dimostra che il problema della sintesi si traduce in una equazione di Riccati in uno opportuno spazio prodotto e si prova che tale equazione ammette un’unica soluzione.

Currently displaying 201 – 220 of 231