Large deviations for generic stationary processes
Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.
Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.
We consider a hierarchy of notions of largeness for subsets of ℤ (such as thick sets, syndetic sets, IP-sets, etc., as well as some new classes) and study them in conjunction with recurrence in topological dynamics and ergodic theory. We use topological dynamics and topological algebra in βℤ to establish connections between various notions of largeness and apply those results to the study of the sets of times of “fat intersection”. Among other things we show that the sets allow one to distinguish...
On démontre le lemme de Mañé-Conze-Guivarc’h (en classe Lipschitz) pour les systèmes amphidynamiques vérifiant une certaine condition d’hyperbolicité : la « rectifiabilité ». Diverses applications sont données.
Le théorème classique de Riesz-Raikov assure que, pour tout entier et toute de , où , les moyennespour presque tout point de . J.Bourgain (cf.Israël Math. Conf. Proc. 1990) a prouvé que la convergence précédente a lieu pour tout réel algébrique et toute de . Dans cet article nous prouvons que, si est un endomorphisme de algébrique sur , dont les valeurs propres sont toutes de module , alors pour toute de , les moyennes convergent vers pour presque tout point de . Nous...