Linear mod one transformations and the distribution of fractional parts {ξ(p/q)ⁿ}
We discuss some implications of linear programming for Mather theory [13, 14, 15] and its finite dimensional approximations. We find that the complementary slackness condition of duality theory formally implies that the Mather set lies in an -dimensional graph and as well predicts the relevant nonlinear PDE for the “weak KAM” theory of Fathi [6, 7, 8, 5].
We discuss some implications of linear programming for Mather theory [13-15] and its finite dimensional approximations. We find that the complementary slackness condition of duality theory formally implies that the Mather set lies in an n-dimensional graph and as well predicts the relevant nonlinear PDE for the “weak KAM” theory of Fathi [5-8].
We consider families of unimodal maps whose critical point is slowly recurrent, and we show that the unique absolutely continuous invariant measure of depends differentiably on , as a distribution of order . The proof uses transfer operators on towers whose level boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We give a new representation of for a Benedicks-Carleson map , in terms of a single smooth function and the inverse branches...
We prove that the linearization of a germ of holomorphic map of the type has a -holomorphic dependence on the multiplier . -holomorphic functions are -Whitney smooth functions, defined on compact subsets and which belong to the kernel of the operator. The linearization is analytic for and the unit circle appears as a natural boundary (because of resonances,i.e.roots of unity). However the linearization is still defined at most points of , namely those points which lie “far enough from...
We prove that the linearization functor from the category of Hamiltonian -actions with group-valued moment maps in the sense of Lu, to the category of ordinary Hamiltonian - actions, preserves products up to symplectic isomorphism. As an application, we give a new proof of the Thompson conjecture on singular values of matrix products and extend this result to the case of real matrices. We give a formula for the Liouville volume of these spaces and obtain from it a hyperbolic version of the Duflo...
We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.
We show that for some simple classical chaotic dynamical systems the set of Li-Yorke pairs has full Hausdorff dimension on invariant sets.