Displaying 21 – 40 of 121

Showing per page

Decay of correlations for nonuniformly expanding systems

Sébastien Gouëzel (2006)

Bulletin de la Société Mathématique de France

We estimate the speed of decay of correlations for general nonuniformly expanding dynamical systems, using estimates on the time the system takes to become really expanding. Our method can deal with fast decays, such as exponential or stretched exponential. We prove in particular that the correlations of the Alves-Viana map decay in O ( e - c n ) .

Density of paths of iterated Lévy transforms of brownian motion

Marc Malric (2012)

ESAIM: Probability and Statistics

The Lévy transform of a Brownian motion B is the Brownian motion B(1) given by Bt(1) = ∫0tsgn(Bs)dBs; call B(n) the Brownian motion obtained from B by iterating n times this transformation. We establish that almost surely, the sequence of paths (t → Bt(n))n⩾0 is dense in Wiener space, for the topology of uniform convergence on compact time intervals.

Density of paths of iterated Lévy transforms of Brownian motion

Marc Malric (2012)

ESAIM: Probability and Statistics

The Lévy transform of a Brownian motion B is the Brownian motion B(1) given by Bt(1) = ∫0tsgn(Bs)dBs; call B(n) the Brownian motion obtained from B by iterating n times this transformation. We establish that almost surely, the sequence of paths (t → Bt(n))n⩾0 is dense in Wiener space, for the topology of uniform convergence on compact time intervals.

Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich-Zorich

Raphaël Krikorian (2003/2004)

Séminaire Bourbaki

Étant donnée une fonction régulière de moyenne nulle sur le tore de dimension 2 , il est facile de voir que ses intégrales ergodiques au-dessus d’un flot de translation “générique”sont bornées. Il y a une dizaine d’années, A. Zorich a observé numériquement une croissance en puissance du temps de ces intégrales ergodiques au-dessus de flots d’hamiltoniens (non-exacts) “génériques”sur des surfaces de genre supérieur ou égal à 2 , et Kontsevich et Zorich ont proposé une explication (conjecturelle) de...

Dispersing cocycles and mixing flows under functions

Klaus Schmidt (2002)

Fundamenta Mathematicae

Let T be a measure-preserving and mixing action of a countable abelian group G on a probability space (X,,μ) and A a locally compact second countable abelian group. A cocycle c: G × X → A for T disperses if l i m g c ( g , · ) - α ( g ) = in measure for every map α: G → A. We prove that such a cocycle c does not disperse if and only if there exists a compact subgroup A₀ ⊂ A such that the composition θ ∘ c: G × X → A/A₀ of c with the quotient map θ: A → A/A₀ is trivial (i.e. cohomologous to a homomorphism η: G → A/A₀). This result...

Effective equidistribution of S-integral points on symmetric varieties

Yves Benoist, Hee Oh (2012)

Annales de l’institut Fourier

Let K be a global field of characteristic not 2. Let Z = H G be a symmetric variety defined over K and S a finite set of places of K . We obtain counting and equidistribution results for the S-integral points of Z . Our results are effective when K is a number field.

Eigenvalues and simplicity of interval exchange transformations

Sébastien Ferenczi, Luca Q. Zamboni (2011)

Annales scientifiques de l'École Normale Supérieure

For a class of d -interval exchange transformations, which we call the symmetric class, we define a new self-dual induction process in which the system is successively induced on a union of sub-intervals. This algorithm gives rise to an underlying graph structure which reflects the dynamical behavior of the system, through the Rokhlin towers of the induced maps. We apply it to build a wide assortment of explicit examples on four intervals having different dynamical properties: these include the first...

Entropy dimension and variational principle

Young-Ho Ahn, Dou Dou, Kyewon Koh Park (2010)

Studia Mathematica

Recently the notions of entropy dimension for topological and measurable dynamical systems were introduced in order to study the complexity of zero entropy systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions range from zero to one and whose measure-theoretic entropy dimensions are identically zero. Hence entropy dimension does not obey the variational principle.

Entropy pairs of ℤ² and their directional properties

Kyewon Koh Park, Uijung Lee (2004)

Studia Mathematica

Topological and metric entropy pairs of ℤ²-actions are defined and their properties are investigated, analogously to ℤ-actions. In particular, mixing properties are studied in connection with entropy pairs.

Equidistribution in S -arithmetic and adelic spaces

Antonin Guilloux (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

We give an introduction to adelic mixing and its applications for mathematicians knowing about the mixing of the geodesic flow on hyperbolic surfaces. We focus on the example of the Hecke trees in the modular surface.

Ergodic averages and free 2 actions

Zoltán Buczolich (1999)

Fundamenta Mathematicae

If the ergodic transformations S, T generate a free 2 action on a finite non-atomic measure space (X,S,µ) then for any c 1 , c 2 there exists a measurable function f on X for which ( N + 1 ) - 1 j = 0 N f ( S j x ) c 1 and ( N + 1 ) - 1 j = 0 N f ( T j x ) c 2 µ -almost everywhere as N → ∞. In the special case when S, T are rationally independent rotations of the circle this result answers a question of M. Laczkovich.

Ergodic averages with deterministic weights

Fabien Durand, Dominique Schneider (2002)

Annales de l’institut Fourier

We study the convergence of the ergodic averages 1 N k = 0 N - 1 θ ( k ) f T u k where ( θ ( k ) ) k is a bounded sequence and ( u k ) k a strictly increasing sequence of integers such that Sup α | k = 0 N - 1 θ ( k ) exp ( 2 i π α u k ) | = O ( N δ ) for some δ < 1 . Moreover we give explicit such sequences θ and u and we investigate in particular the case where θ is a q -multiplicative sequence.

Ergodic properties of a class of discrete Abelian group extensions of rank-one transformations

Chris Dodd, Phakawa Jeasakul, Anne Jirapattanakul, Daniel M. Kane, Becky Robinson, Noah D. Stein, Cesar E. Silva (2010)

Colloquium Mathematicae

We define a class of discrete Abelian group extensions of rank-one transformations and establish necessary and sufficient conditions for these extensions to be power weakly mixing. We show that all members of this class are multiply recurrent. We then study conditions sufficient for showing that Cartesian products of transformations are conservative for a class of invertible infinite measure-preserving transformations and provide examples of these transformations.

Ergodic properties of square-free numbers

Francesco Cellarosi, Jakov G. Sinaj (2013)

Journal of the European Mathematical Society

We construct a natural invariant measure concentrated on the set of square-free numbers, and invariant under the shift. We prove that the corresponding dynamical system is isomorphic to a translation on a compact, Abelian group. This implies that this system is not weakly mixing and has zero measure-theoretical entropy.

Currently displaying 21 – 40 of 121