Chaotic attractor generation via a simple linear time-varying system.
By introducing a feedback control to a proposed Sprott E system, an extremely complex chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show that chaos also can be generated via a period-doubling bifurcation when the system has one and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived...
La notion de type géométrique d’une partition de Markov est au centre de la classification des difféomorphismes de Smale i.e. des difféomorphismes - structurellement stables des surfaces. On résout ici le problème de réalisabilité : on donne un critère effectif pour décider si une combinatoire abstraite est, ou n’est pas, le type géométrique d’une partition de Markov de pièce basique de difféomorphisme de Smale de surface compacte.
We give a structure result for the positive radial solutions of the following equation: with some monotonicity assumptions on the positive function . Here , ; we consider the case when , and . We continue the discussion started by Kawano et al. in [KYY], refining the estimates on the asymptotic behavior of Ground States with slow decay and we state the existence of S.G.S., giving also for them estimates on the asymptotic behavior, both as and as . We make use of a Emden-Fowler transform...
We show that most compact semi-simple Lie groups carry many left invariant metrics with positive topological entropy. We also show that many homogeneous spaces admit collective Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow has positive topological entropy. Other properties of collective geodesic flows are also discussed.