Displaying 81 – 100 of 158

Showing per page

Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps

Antonio Garijo, Xavier Jarque, Mónica Moreno Rocha (2011)

Fundamenta Mathematicae

We consider the family of transcendental entire maps given by f a ( z ) = a ( z - ( 1 - a ) ) e x p ( z + a ) where a is a complex parameter. Every map has a superattracting fixed point at z = -a and an asymptotic value at z = 0. For a > 1 the Julia set of f a is known to be homeomorphic to the Sierpiński universal curve, thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing...

Non-recurrent meromorphic functions

Jacek Graczyk, Janina Kotus, Grzegorz Świątek (2004)

Fundamenta Mathematicae

We consider a transcendental meromorphic function f belonging to the class ℬ (with bounded set of singular values). We show that if the Julia set J(f) is the whole complex plane ℂ, and the closure of the postcritical set P(f) is contained in B(0,R) ∪ {∞} and is disjoint from the set Crit(f) of critical points, then every compact and forward invariant set is hyperbolic, provided that it is disjoint from Crit(f). It is further shown, under general additional hypotheses, that f admits no measurable...

Normalization of bundle holomorphic contractions and applications to dynamics

François Berteloot, Christophe Dupont, Laura Molino (2008)

Annales de l’institut Fourier

We establish a Poincaré-Dulac theorem for sequences ( G n ) n of holomorphic contractions whose differentials d 0 G n split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps.Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of k . In this context, our normalization result allows to estimate precisely the distortions of ellipsoids...

On a general difference Galois theory II

Shuji Morikawa, Hiroshi Umemura (2009)

Annales de l’institut Fourier

We apply the General Galois Theory of difference equations introduced in the first part to concrete examples. The General Galois Theory allows us to define a discrete dynamical system being infinitesimally solvable, which is a finer notion than being integrable. We determine all the infinitesimally solvable discrete dynamical systems on the compact Riemann surfaces.

On a theorem of Rees-Shishikura

Guizhen Cui, Wenjuan Peng, Lei Tan (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

Rees-Shishikura’s theorem plays an important role in the study of matings of polynomials. It promotes Thurston’s combinatorial equivalence into a semi-conjugacy. In this work we restate and reprove Rees-Shishikura’s theorem in a more general form, which can then be applied to a wider class of postcritically finite branched coverings. We provide an application of the restated theorem.

On an analytic approach to the Fatou conjecture

Genadi Levin (2002)

Fundamenta Mathematicae

Let f be a quadratic map (more generally, f ( z ) = z d + c , d > 1) of the complex plane. We give sufficient conditions for f to have no measurable invariant linefields on its Julia set. We also prove that if the series n 0 1 / ( f ) ' ( c ) converges absolutely, then its sum is non-zero. In the proof we use analytic tools, such as integral and transfer (Ruelle-type) operators and approximation theorems.

On biaccessible points in Julia sets of polynomials

Anna Zdunik (2000)

Fundamenta Mathematicae

Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.

On commuting polynomial automorphisms of C2.

Cinzia Bisi (2004)

Publicacions Matemàtiques

We charocterize the commuting polynomial automorphisms of C2, using their meromorphic extension to P2 and looking at their dynamics on the line at infinity.

On perturbations of pluriregular sets generated by sequences of polynomial maps

Maciej Klimek (2003)

Annales Polonici Mathematici

It is shown that an infinite sequence of polynomial mappings of several complex variables, with suitable growth restrictions, determines a filled-in Julia set which is pluriregular. Such sets depend continuously and analytically on the generating sequences, in the sense of pluripotential theory and the theory of set-valued analytic functions, respectively.

On μ-compatible metrics and measurable sensitivity

Ilya Grigoriev, Marius Cătălin Iordan, Amos Lubin, Nathaniel Ince, Cesar E. Silva (2012)

Colloquium Mathematicae

We introduce the notion of W-measurable sensitivity, which extends and strictly implies canonical measurable sensitivity, a measure-theoretic version of sensitive dependence on initial conditions. This notion also implies pairwise sensitivity with respect to a large class of metrics. We show that nonsingular ergodic and conservative dynamical systems on standard spaces must be either W-measurably sensitive, or isomorphic mod 0 to a minimal uniformly rigid isometry. In the finite measure-preserving...

Currently displaying 81 – 100 of 158