Previous Page 3

Displaying 41 – 59 of 59

Showing per page

Porosity of Collet–Eckmann Julia sets

Feliks Przytycki, Steffen Rohde (1998)

Fundamenta Mathematicae

We prove that the Julia set of a rational map of the Riemann sphere satisfying the Collet-Eckmann condition and having no parabolic periodic point is mean porous, if it is not the whole sphere. It follows that the Minkowski dimension of the Julia set is less than 2.

Pull-back of currents by meromorphic maps

Tuyen Trung Truong (2013)

Bulletin de la Société Mathématique de France

Let  X and Y be compact Kähler manifolds, and let  f : X Y be a dominant meromorphic map. Based upon a regularization theorem of Dinh and Sibony for DSH currents, we define a pullback operator f for currents of bidegrees ( p , p ) of finite order on  Y (and thus foranycurrent, since Y is compact). This operator has good properties as may be expected. Our definition and results are compatible to those of various previous works of Meo, Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony, and can...

Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques

Olivier Bodart, Michel Zinsmeister (1996)

Fundamenta Mathematicae

This paper deals with the Hausdorff dimension of the Julia set of quadratic polynomials. It is divided in two parts. The first aims to compute good numerical approximations of the dimension for hyperbolic points. For such points, Ruelle’s thermodynamical formalism applies, hence computing the dimension amounts to computing the zero point of a pressure function. It is this pressure function that we approximate by a Monte-Carlo process combined with a shift method that considerably decreases the computational...

Rigidity of harmonic measure

I. Popovici, Alexander Volberg (1996)

Fundamenta Mathematicae

Let J be the Julia set of a conformal dynamics f. Provided that f is polynomial-like we prove that the harmonic measure on J is mutually absolutely continuous with the measure of maximal entropy if and only if f is conformally equivalent to a polynomial. This is no longer true for generalized polynomial-like maps. But for such dynamics the coincidence of classes of these two measures turns out to be equivalent to the existence of a conformal change of variable which reduces the dynamical system...

Sur la dynamique des difféomorphismes birationnels des surfaces algébriques réelles : ensemble de Fatou et lieu réel

Arnaud Moncet (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

On s’intéresse aux difféomorphismes birationnels des surfaces algébriques réelles qui possèdent une dynamique réelle simple et une dynamique complexe riche. On donne un exemple d’une telle transformation sur 1 × 1 , mais on montre qu’une telle situation est exceptionnelle et impose des conditions fortes à la fois sur la topologie du lieu réel et sur la dynamique réelle.

Sur les ensembles de Julia et Fatou des fonctions entières ultramétriques

Jean-Paul Bézivin (2001)

Annales de l’institut Fourier

Soit p un nombre premier rationnel. Le sujet de l’article est l’étude de la dynamique des fonctions entières p -adiques. On démontre des résultats analogues à ceux connus dans le domaine complexe, en particulier si deux fonctions entières p -adiques qui ont un point répulsif commun commutent, alors leurs ensembles de Julia et de Fatou sont les mêmes.

The dynamics of holomorphic maps near curves of fixed points

Filippo Bracci (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let M be a two-dimensional complex manifold and f : M M a holomorphic map. Let S M be a curve made of fixed points of f , i.e.  Fix ( f ) = S . We study the dynamics near  S in case  f acts as the identity on the normal bundle of the regular part of  S . Besides results of local nature, we prove that if  S is a globally and locally irreducible compact curve such that S · S < 0 then there exists a point p S and a holomorphic f -invariant curve with  p on the boundary which is attracted by  p under the action of  f . These results are achieved...

Uniformization of the leaves of a rational vector field

Alberto Candel, X. Gómez-Mont (1995)

Annales de l'institut Fourier

We study the analytic structure of the leaves of a holomorphic foliation by curves on a compact complex manifold. We show that if every leaf is a hyperbolic surface then they can be simultaneously uniformized in a continuous manner. In case the manifold is complex projective space a sufficient condition is that there are no algebraic leaf.

[unknown]

Takato Uehara (0)

Annales de l’institut Fourier

Currently displaying 41 – 59 of 59

Previous Page 3