Displaying 281 – 300 of 378

Showing per page

Repelling periodic points and landing of rays for post-singularly bounded exponential maps

Anna Miriam Benini, Mikhail Lyubich (2014)

Annales de l’institut Fourier

We show that repelling periodic points are landing points of periodic rays for exponential maps whose singular value has bounded orbit. For polynomials with connected Julia sets, this is a celebrated theorem by Douady, for which we present a new proof. In both cases we also show that points in hyperbolic sets are accessible by at least one and at most finitely many rays. For exponentials this allows us to conclude that the singular value itself is accessible.

Rigidity of harmonic measure

I. Popovici, Alexander Volberg (1996)

Fundamenta Mathematicae

Let J be the Julia set of a conformal dynamics f. Provided that f is polynomial-like we prove that the harmonic measure on J is mutually absolutely continuous with the measure of maximal entropy if and only if f is conformally equivalent to a polynomial. This is no longer true for generalized polynomial-like maps. But for such dynamics the coincidence of classes of these two measures turns out to be equivalent to the existence of a conformal change of variable which reduces the dynamical system...

Rosen fractions and Veech groups, an overly brief introduction

Thomas A. Schmidt (2009)

Actes des rencontres du CIRM

We give a very brief, but gentle, sketch of an introduction both to the Rosen continued fractions and to a geometric setting to which they are related, given in terms of Veech groups. We have kept the informal approach of the talk at the Numerations conference, aimed at an audience assumed to have heard of neither of the topics of the title.The Rosen continued fractions are a family of continued fraction algorithms, each gives expansions of real numbers in terms of elements of a corresponding algebraic...

Self-affine fractals of finite type

Christoph Bandt, Mathias Mesing (2009)

Banach Center Publications

In the class of self-affine sets on ℝⁿ we study a subclass for which the geometry is rather tractable. A type is a standardized position of two intersecting pieces. For a self-affine tiling, this can be identified with an edge or vertex type. We assume that the number of types is finite. We study the topology of such fractals and their boundary sets, and we show how new finite type fractals can be constructed. For finite type self-affine tiles in the plane we give an algorithm which decides whether...

Semicompleteness of homogeneous quadratic vector fields

Adolfo Guillot (2006)

Annales de l’institut Fourier

We investigate the quadratic homogeneous holomorphic vector fields on  C n that are semicomplete, this is, those whose solutions are single-valued in their maximal definition domain. To a generic quadratic vector field we rationally associate some complex numbers that turn out to be integers in the semicomplete case, thus showing that the linear equivalence classes of semicomplete vector fields are contained in some sort of lattice in the space of linear equivalence classes of quadratic ones. We prove...

Shadow trees of Mandelbrot sets

Virpi Kauko (2003)

Fundamenta Mathematicae

The topology and combinatorial structure of the Mandelbrot set d (of degree d ≥ 2) can be studied using symbolic dynamics. Each parameter is mapped to a kneading sequence, or equivalently, an internal address; but not every such sequence is realized by a parameter in d . Thus the abstract Mandelbrot set is a subspace of a larger, partially ordered symbol space, Λ d . In this paper we find an algorithm to construct “visible trees” from symbolic sequences which works whether or not the sequence is realized....

Sheaves associated to holomorphic first integrals

Alexis García Zamora (2000)

Annales de l'institut Fourier

Let : L T S be a foliation on a complex, smooth and irreducible projective surface S , assume admits a holomorphic first integral f : S 1 . If h 0 ( S , 𝒪 S ( - n 𝒦 S ) ) > 0 for some n 1 we prove the inequality: ( 2 n - 1 ) ( g - 1 ) h 1 ( S , ' - 1 ( - ( n - 1 ) K S ) ) + h 0 ( S , ' ) + 1 . If S is rational we prove that the direct image sheaves of the co-normal sheaf of under f are locally free; and give some information on the nature of their decomposition as direct sum of invertible sheaves.

Siciak's extremal function in complex and real analysis

W. Pleśniak (2003)

Annales Polonici Mathematici

The Siciak extremal function establishes an important link between polynomial approximation in several variables and pluripotential theory. This yields its numerous applications in complex and real analysis. Some of them can be found on a rich list drawn up by Klimek in his well-known monograph "Pluripotential Theory". The purpose of this paper is to supplement it by applications in constructive function theory.

Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks

Masafumi Yoshino, Todor Gramchev (2008)

Annales de l’institut Fourier

We study the simultaneous linearizability of d –actions (and the corresponding d -dimensional Lie algebras) defined by commuting singular vector fields in n fixing the origin with nontrivial Jordan blocks in the linear parts. We prove the analytic convergence of the formal linearizing transformations under a certain invariant geometric condition for the spectrum of d vector fields generating a Lie algebra. If the condition fails and if we consider the situation where small denominators occur, then...

Currently displaying 281 – 300 of 378