A "Birkhoff-Lewis" type result for a class of Hamiltonian systems.
We present a description of isochronous centres of planar vector fields X by means of their groups of symmetries. More precisely, given a normalizer U of X (i.e., [X,U]= µ X, where µ is a scalar function), we provide a necessary and sufficient isochronicity condition based on µ. This criterion extends the result of Sabatini and Villarini that establishes the equivalence between isochronicity and the existence of commutators ([X,U]= 0). We put also special emphasis on the mechanical aspects of isochronicity;...
We provide an approximation of Mather variational problem by finite dimensional minimization problems in the framework of Γ-convergence. By a linear programming interpretation as done in [Evans and Gomes, ESAIM: COCV 8 (2002) 693–702] we state a duality theorem for the Mather problem, as well a finite dimensional approximation for the dual problem.
We study dynamics of singular Lagrangian systems described by implicit differential equations from a geometric point of view using the exterior differential systems approach. We analyze a concrete Lagrangian previously studied by other authors by methods of Dirac’s constraint theory, and find its complete dynamics.
Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection...