Generalized Hamiltonian biodynamics and topology invariants of humanoid robots.
The notion of generalized PN manifold is a framework which allows one to get properties of first integrals of the associated bihamiltonian system: conditions of existence of a bi-abelian subalgebra obtained from the momentum map and characterization of such an algebra linked with the problem of separation of variables.
In this article, we present a new approach of Nekhoroshev’s theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak, it combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of...
By applying the Hamiltonian reduction technique we derive a matrix first order differential equation that yields the classical r-matrices of the elliptic (Euler-) Calogero-Moser systems as well as their degenerations.
In this paper, we consider C1,1 Hamiltonian systems. We prove the existence of a first derivative of the flow with respect to initial values and show that it satisfies the symplecticity condition almost everywhere in the phase-space. In a second step, we present a geometric integrator for such systems (called the SDH method) based on B-splines interpolation and a splitting method introduced by McLachlan and Quispel [Appl. Numer. Math. 45 (2003) 411–418], and we prove it is convergent, and that...
In this survey article, nonholonomic mechanics is presented as a part of geometric mechanics. We follow a geometric setting where the constraint manifold is a submanifold in a jet bundle, and a nonholonomic system is modelled as an exterior differential system on the constraint manifold. The approach admits to apply coordinate independent methods, and is not limited to Lagrangian systems under linear constraints. The new methods apply to general (possibly nonconservative) mechanical systems subject...
A geometric quantization of a Kähler manifold, viewed as a symplectic manifold, depends on the complex structure compatible with the symplectic form. The quantizations form a vector bundle over the space of such complex structures. Having a canonical quantization would amount to finding a natural (projectively) flat connection on this vector bundle. We prove that for a broad class of manifolds, including symplectic homogeneous spaces (e.g., the sphere), such connection does not exist. This is a...
Se discuten algunos aspectos del problema de Landau-Hall hiperbólico. El álgebra de Lie de las simetrías infinitesimales de este problema se da explícitamente, resultando ser isomorfa a so(2,1) y que sus invariantes Noether asociados son los momentos angulares hiperbólicos. Asimismo se desarrolla la formulación hamiltoniana, lo que nos permitirá obtener la variedad de órbitas de energía constante de este problema mediante técnicas de reducción simpléctica.